Promoting High Quality Teacher Evaluations in Michigan:

Lessons from a Pilot of Educator Effectiveness Tools

Brian Rowan
Stephen G. Schilling
Angeline Spain
Prem Bhandari
Daniel Berger
John Graves

December, 2013
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>The Pilot of Educator Effectiveness</td>
<td>1</td>
</tr>
<tr>
<td>Tools Goals of the Pilot Research</td>
<td>2</td>
</tr>
<tr>
<td>Structure of this Report</td>
<td>2</td>
</tr>
<tr>
<td>Chapter 2: Key Findings on Pilot Activities</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings on District Policy Development</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings on Principal Workload</td>
<td>3</td>
</tr>
<tr>
<td>Key Findings on Classroom Observation Tools: Vendor Training</td>
<td>5</td>
</tr>
<tr>
<td>Key Findings on Classroom Observation Tools: Fidelity of Use</td>
<td>6</td>
</tr>
<tr>
<td>Key Findings on Student Growth Tools</td>
<td>8</td>
</tr>
<tr>
<td>Key Findings on Final Evaluation Ratings</td>
<td>10</td>
</tr>
<tr>
<td>Key Findings on Principals' and Teachers' Views of the Evaluation</td>
<td>12</td>
</tr>
<tr>
<td>Chapter 3: Improving the Teacher Observation Process</td>
<td>15</td>
</tr>
<tr>
<td>Improving the Use of Classroom Observation Data</td>
<td>15</td>
</tr>
<tr>
<td>Chapter 4: Are Value-Added Models an Option for Michigan?</td>
<td>22</td>
</tr>
<tr>
<td>VAM Pilot Data and Procedures</td>
<td>22</td>
</tr>
<tr>
<td>Statistical Models Used by VAM Vendors</td>
<td>23</td>
</tr>
<tr>
<td>Data Processing Issues Prior to VAM Analyses</td>
<td>24</td>
</tr>
<tr>
<td>The Pilot Roster Project</td>
<td>27</td>
</tr>
<tr>
<td>Results of VAM Analyses</td>
<td>28</td>
</tr>
<tr>
<td>Chapter 5: Setting Standards for Teacher Evaluation</td>
<td>33</td>
</tr>
<tr>
<td>Two Approaches to Performance Rating</td>
<td>33</td>
</tr>
<tr>
<td>Estimated Levels of Performance</td>
<td>34</td>
</tr>
<tr>
<td>Imprecision in Teacher Performance Estimates</td>
<td>37</td>
</tr>
<tr>
<td>Taking Imprecision into Account in Making “High Stakes” Personnel Decisions</td>
<td>39</td>
</tr>
<tr>
<td>The Problem of Joint Classification</td>
<td>41</td>
</tr>
<tr>
<td>Classification Without Confidence Intervals: Simple Ranking Systems</td>
<td>45</td>
</tr>
<tr>
<td>Chapter 6: Action Steps to Improve Teacher Evaluations in Michigan</td>
<td>47</td>
</tr>
<tr>
<td>Improving District Policy and Procedure Manuals</td>
<td>47</td>
</tr>
<tr>
<td>Improving Classroom Observation Procedures</td>
<td>47</td>
</tr>
<tr>
<td>Improving Measurement of Student Growth</td>
<td>48</td>
</tr>
<tr>
<td>Assignment of Effectiveness Ratings to Teachers</td>
<td>49</td>
</tr>
<tr>
<td>Timing of Improvement Steps to Teachers</td>
<td>50</td>
</tr>
<tr>
<td>Costs</td>
<td>52</td>
</tr>
</tbody>
</table>
Acknowledgments

Work on this report was conducted for the Michigan Council for Educator Effectiveness by the University of Michigan’s Institute for Social Research under an intergovernmental services agreement between the State of Michigan’s Department of Technology, Management, and Budget and the Regents of the University of Michigan.

The authors want to express deep appreciation to staff of the Survey Operations Unit of the Survey Research Center of the University of Michigan’s Institute for Social Research. Without this unit’s operational support, this project could not have been conducted. Stephanie Chardoul and Meredith A. House, senior staff of the unit, were especially critical to the success of the project. Catherine Thibault, Assistant Director of the Survey Research Center also provided key support for the project.

The authors also want to thank the students, faculty, administrators, and staff of the districts that participated in the pilot of educator effectiveness tools for cooperation in various research and development activities. We also would like to thank the many state employees without whose work the project could not have been completed. Finally, we thank the many vendors who provided support, training, data, and data analyses for the project.

Special thanks are due to the members and staff of the Michigan Council for Educator Effectiveness for important assistance and feedback at all stages of the work. Special thanks also are due to Dennis Schornack, Senior Strategy Advisor in the Executive Office of the Governor, for managing the intergovernmental services agreement and for showing keen interest in the project. Thanks finally to Deborah Ball, Dean of the School of Education and Chair of the Michigan Council for Educator Effectiveness for support and advice over the course of the project.
Abstract

This is a preliminary report by the University of Michigan’s Institute for Social Research (ISR) on the pilot of educator effectiveness tools commissioned by the Michigan Council for Educator Effectiveness and conducted during the 2012-2013 school year in 13 public school districts in Michigan. Chapter 1 of this report briefly introduces the main goals of the pilot initiative and describes the research and development activities conducted in schools as part of the pilot. Chapter 2 describes ISR’s main findings about how pilot activities were carried out in local schools. The next three chapters discuss some approaches to improving teacher evaluation practices in local schools. Chapter 3 discusses various approaches to improving classroom observations conducted as part of the teacher evaluation process; Chapter 4 discusses the extent to which value-added measures of teaching effectiveness might represent a viable approach to measuring teachers’ contributions to students’ academic growth in the teacher evaluation process; and Chapter 5 discusses some approaches to assigning final effectiveness ratings to teachers as part of the evaluation process. Chapter 6 describes some action steps that might be taken by state and local education agencies in Michigan to improve teacher evaluation activities in local schools.

The reader will note that the absence of an executive summary of this report. Instead, the text of the report has been organized to help any reader obtain an overview of the report’s central details. Important points in the report are highlighted in bold text with italics, and many tables are provided to give the reader a good sense of the data on which the report’s findings are based. Therefore, a quick scan of the highlighted text and tables should give any reader an initial sense of the report’s major findings. The reader is also advised that several of the analyses reported here are preliminary and subject to change with additional analyses. While such changes are unlikely to alter the main conclusions of the report, the reader is nevertheless advised that the data collected and analyzed during the pilot project were complex and that a final technical report on the project will not be released until March 31, 2014.
Chapter 1: Introduction

Michigan’s Public Act (PA) 102 of 2011 fundamentally redefined the nature of teacher evaluation in the state’s public schools. The new law required public education agencies to evaluate teachers using multiple criteria—including classroom observations and evidence of student learning—and to assign a final effectiveness rating to teachers as a result of an annual evaluation process. The law also established the Michigan Council for Educator Effectiveness (MCEE) as a temporary state commission to advise the Governor, State Board of Education, and State Legislature on a number of issues related to the implementation of PA 102 of 2011. To inform the Council’s deliberations, the University of Michigan’s Institute for Social Research (ISR) was engaged to conduct a pilot of educator effectiveness tools. The pilot was funded through an intergovernmental services agreement between the State of Michigan’s Department of Technology, Management, and Budget and the Regents of the University of Michigan.

The Pilot of Educator Effectiveness Tools

The pilot of educator effectiveness tools was conducted in 13 Michigan school districts during the 2012-2013 school year. During the pilot year, participating school districts: (a) piloted one of four classroom observation tools being considered for possible adoption as the state tool for classroom observations in Michigan; (b) piloted a set of student assessments that closely resembled (but were not identical to) the student growth tools the Council recommended in its June, 2013 final report; and (c) allowed researchers to administer surveys to principals and teachers, to conduct classroom observations alongside district personnel, and to collect documents related to the conduct of teacher evaluations.

<table>
<thead>
<tr>
<th>At a Glance: The Pilot Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 13 school districts in lower Michigan participated:</td>
</tr>
<tr>
<td>o Big Rapids</td>
</tr>
<tr>
<td>o Cassopolis</td>
</tr>
<tr>
<td>o Clare</td>
</tr>
<tr>
<td>o Farmington</td>
</tr>
<tr>
<td>o Garden City</td>
</tr>
<tr>
<td>o Gibraltar</td>
</tr>
<tr>
<td>o Harper Creek</td>
</tr>
<tr>
<td>o Leslie</td>
</tr>
<tr>
<td>o Marshall</td>
</tr>
<tr>
<td>o Montrose</td>
</tr>
<tr>
<td>o Mt. Morris</td>
</tr>
<tr>
<td>o North Branch</td>
</tr>
<tr>
<td>o Port Huron</td>
</tr>
<tr>
<td>• Four observation tools were piloted:</td>
</tr>
<tr>
<td>o Danielson’s Framework for Teaching</td>
</tr>
<tr>
<td>o 5 Dimensions of Teaching & Learning</td>
</tr>
<tr>
<td>o Marzano Teacher Evaluation Model</td>
</tr>
<tr>
<td>o Thoughtful Classroom Framework</td>
</tr>
<tr>
<td>• Four student growth tools were piloted:</td>
</tr>
<tr>
<td>o NWEA MAP Series (Grades K-6)</td>
</tr>
<tr>
<td>o ACT Explore (Grades 7-8)</td>
</tr>
<tr>
<td>o ACT Plan (Grades 9-10)</td>
</tr>
<tr>
<td>o ACT (Grade 12)</td>
</tr>
<tr>
<td>• Seven research activities were conducted:</td>
</tr>
<tr>
<td>o Interviews with district administrators</td>
</tr>
<tr>
<td>o Evaluation policy documents collected</td>
</tr>
<tr>
<td>o Teacher survey administered (n = 1182)</td>
</tr>
<tr>
<td>o Principal survey administered (n = 99)</td>
</tr>
<tr>
<td>o Independent classroom observations</td>
</tr>
<tr>
<td>o Value-added scores calculated</td>
</tr>
<tr>
<td>o Final effectiveness ratings collected</td>
</tr>
</tbody>
</table>
Goals of the Pilot Research

Research on the pilot initiative conducted by ISR had the following goals:

- to gather a wide variety of interview, survey, and observational data on the ways teacher evaluations were conducted in pilot schools;

- to examine various approaches to improving the teacher evaluation process by modifying classroom observation procedures, devising rigorous, fair, and useful procedures for measuring student growth and estimating teachers’ contributions to their students’ achievement, and developing rigorous and fair approaches to assigning teachers to effectiveness ratings; and

- to solicit the opinions of teacher and administrators in pilot schools about the teacher evaluation process and how it might be improved.

Structure of this Report

These issues are discussed in five subsequent chapters. Chapter 2 of this report describes key findings about how teacher evaluations were conducted in schools during the pilot year. Chapter 3 closely examines the data from classroom observations conducted during the pilot year and explores some approaches to improving this process. Chapter 4 examines the value-added statistical modelling conducted by vendors and discusses the steps needed for Michigan to use “value-added” modeling (VAM) in teacher evaluations. Chapter 5 discusses various approaches to assigning teachers to effectiveness ratings using data from classroom observations and value-added measures. Chapter 6 suggests some action steps for the development and implementation of high quality teacher evaluations in Michigan.
Chapter 2: Key Findings on Pilot Activities

This chapter reports some key findings from the pilot initiative. The results are reported in the following areas: (a) district policy development; (b) the workload of educators who conducted teacher evaluations in pilot schools; (c) how classroom observations were conducted in pilot schools; (d) how student growth was measured for the purposes of teacher evaluation in pilot schools; (e) how data from classroom observations and measures of student growth were combined in order to assign final evaluation ratings to teachers; and (f) the reports of teachers and principals on the quality and consequences of teacher evaluation practices enacted during the pilot year.

Key Findings on District Policy Development

When the pilot of educator effectiveness tools was launched in the summer of 2012, many pilot districts were in the beginning stages of implementing PA 102 of 2011. The law required certain evaluation activities to be implemented in schools but still gave districts wide discretion to develop and conduct teacher evaluations according to local preferences. Like the law, ISR imposed few requirements on districts. ISR asked only that participating districts use their assigned teacher observation tool according to vendor guidelines, implement the testing regimes associated with piloted student growth tools, and allow ISR to conduct research activities in their schools. Apart from these requirements, districts were responsible for developing teacher evaluation policies and practices that complied with the provisions of PA 102 of 2011 according to local preferences.

At the beginning of the pilot year, most pilot districts lacked fully-developed policies to guide the teacher evaluation practices required under PA 102 of 2011. As a result, during the pilot year, participating districts worked diligently to develop such policies. Two key findings emerged from ISR’s study of district policy development:

Policies were developed by teams. All districts in the pilot used a team approach to developing new district policies about teacher evaluation. A few of these districts used teams composed only of central office administrators and principals. However, most districts also included teachers in the planning process. In these latter districts, however, the size of the planning teams varied, as did the role of principals. In one large district, planning was done through a number of task forces, while in most other districts, planning teams were smaller.

Procedural documents were often under-developed. At the beginning of the pilot year, districts generally lacked well-structured and detailed documents describing policies and procedures for conducting the new teacher evaluations. By the end of the year, however, most districts had produced such documents. Still, the detail included in such documents varied considerably. Three pilot districts produced thorough and well-articulated statements about teacher evaluation policies and procedures. These documents described the classroom observation process, how student growth would be measured for the purposes of teacher evaluation, and the criteria and procedures that would be used to assign final effectiveness ratings to teachers. However, many other pilot districts had only fragmentary documentation of their evaluation procedures and were just beginning to weave these fragments into a well-designed manual of policies and procedures.

Key Findings on Principal Workload

In all districts, teacher evaluations were largely the responsibility of administrators, although teachers played a critical role in the generation of student growth data.

Responsibility for completing various tasks was distributed across principals, teachers, and central administrators. All education professionals in a district were involved in the work of evaluating teachers, but the work that specific groups undertook varied by role. In all districts, administrators (not teachers) were trained and made responsible for
conducting classroom observations, and in these districts, classroom observations for the purposes of teacher evaluations were conducted mostly by principals, occasionally by central administrators, and never by teachers. In contrast, the measurement of student growth was typically organized as a shared responsibility in which the data to be used for the “student growth” portion of teacher evaluations was developed jointly by teachers and principals. In this process, the tools that would be used to measure student learning were often chosen by teachers (in consultation with their principals) from a list of approved assessment data. Finally, the compilation and analysis of observation and student growth data, and the assignment of final effectiveness ratings to teachers, was typically given over to principals. In all but two districts, however, the assignment of these final ratings was governed by a formula that specified the “weight” to be given to district-specified performance criteria and “cut points” for the assignment of teachers to final effectiveness ratings based on summary rating scores.

Several key findings about workloads emerged from ISR’s research:

Evaluation entailed completing numerous tasks. In all pilot schools, the evaluation process included numerous steps. For example, the median teacher in a pilot school was observed on 4 occasions (but not always for a “full” class period); 99% of principals also reported conducting pre- and/or post-observation conferences with teachers, and 82% of teachers reported participating in such conferences. In addition, 99% of principals and 90% of teachers reported assembling and using student growth measures in their annual evaluation. Finally, nearly all teachers reported receiving an annual effectiveness rating, and about half of all teachers reported receiving a mid-year or year-end evaluation report (not required in AY 2012-2013). Evaluation therefore included: classroom observations, conferencing, measuring student growth, and reporting.

Principals had very large spans of control. An important feature of the teacher evaluation process was that the median principal in pilot schools was responsible for the annual evaluation of 25 teachers (23 tenured teachers and two probationary teachers). In most organizations, the span of control (i.e., ratio of supervisors to employees is 1 to 7, so principals had a very large span of control).

The teacher evaluation process consumed a great deal of principals’ time. Because the annual evaluation process required principals to complete multiple steps for a large number of teachers, it consumed a large amount of time. In the pilot year, the median principal reported spending about 248 hours (or 31 full work days) on teacher evaluation activities. There is reason to expect, however, that this expenditure of time will decline over the next several years. In the pilot year, the evaluation process had to be completed for every teacher. In future years, however, at least some percentage of teachers will have been rated as “highly effective” in consecutive years, and this will reduce principals’ evaluation workloads somewhat in out years.

Key Findings on Classroom Observation Tools:
Vendor Training

We turn now to a key component of principals’ evaluation workload: the teacher observation process. The reader will recall that PA 102 of 2011 requires public education agencies in Michigan to conduct classroom observations as part of the teacher evaluation process, and that if a state tool is used in teacher evaluations, PA 102 further requires that districts conduct observations “in a manner consistent” with guidelines of the observation tool vendor.

MCEE decided to field test four classroom observation tools during the pilot. These were: Danielson’s Framework for Teaching (FFT), Five Dimensions of Teaching and Learning (5D), the Marzano teacher effectiveness model (M), and the Thoughtful Classroom teacher evaluation model (TC).

MCEE contracted with each of these tool vendors to provide four days of training in tool use to participating school districts during late summer of 2012. All tool vendors provided roughly similar training. Over four days, tool vendors: (1) explained the conceptual framework underlying their observation tool; (2) discussed the tool’s scoring rubric; (3) helped trainees understand the evidence that should be used to assign evaluative scores on classroom observations; (4) discussed how to conduct observation conferences with teachers; and (5) explained how to use the software associated with each observation tool (to record and score notes, communicate about observation data with teachers, schedule observations and conferences, and perform analytic tasks [like summarizing observation scores]).

Using survey data from principals, ISR researchers came to several conclusions about the trainings:

Vendor training was only partially successful. On the principal survey, ISR researchers asked principals about the quality of this initial training. On this survey, a large majority of principals agreed or strongly agreed that trainers did a good job explaining the underlying conceptual framework of the observation protocol. However, principals were less inclined to agree or strongly agree that trainers did a good job in other areas of the training, including: explaining the scoring rubric, explaining the evidence that should be used in scoring; explaining how to conduct teacher conferences; and explaining how to use the software associated with the observation instrument.

At the end of training, many principals lacked confidence in their ability to use classroom observation tools with fidelity. Sixty percent of principals reported that, at the end of initial training, they felt confident to conduct teacher observations, and 52% felt confident to conduct pre- and/or post-observation conferences with teachers. However, only 39% were confident that their scoring of lessons was in line with the scoring of others.

Many principals engaged in additional training. Given these findings, it is important to explore what (if any) additional training principals received in observation procedures. Overall, patterns of training varied among principals. About 7% of principals in the pilot study reported receiving no training in the use of an observation tool, whereas the remaining 93% attended initial trainings. But patterns of training departed from there. About 7% of principals reported receiving only the initial vendor training; 20% reported receiving initial training and then discussing how to use the assigned observation tool in district meet-
ings; another 34% added some follow-up training to these experiences; and another 20% of principals had all of these previous experiences plus some individual follow-up training.

Key Findings on Classroom Observation Tools: Fidelity of Use

Given the variation in initial and on-going training, an important question is how well principals were prepared to conduct classroom observations. To investigate this issue, ISR researchers examined vendor databases, which included all scores from principals who conducted classroom observations when they used one of the vendor’s tools. In addition, ISR hired a cadre of former educators to conduct independent classroom observations, sometimes alongside principals and sometimes alongside each other. Records from these observations also were available in vendor databases.

Principals spread observations across the year. The analysis of vendor databases showed that principals tended to spread their classroom observation workload equally across the school year. In addition, when teachers were observed on more than one occasion, the elapsed time between consecutive observations was typically from 10-90 days. Both of these practices make for good sampling of teaching practice, avoiding the observation of a given teacher within a single period of the school year and, instead, sampling across school days to capture the variety of lessons a teacher might conduct.

There was low fidelity in item scoring. In other areas of observation practice, however, principals did not perform as well. To begin, the observation tools in use in the pilot varied as to whether it was mandatory for items on the protocol to be scored on every observation occasion or whether items were to be scored only when lesson activities were judged as relevant. The 5D tool and the FFT tool assumed that all items could be scored across any type of lesson. Thus, all items were mandatory. On the other hand, the Marzano (M) and Thoughtful Classroom (TC) tools assumed that at least some items could be scored only when certain lesson activities were being observed—although TC assumed that four items (measuring what it called the “four corners” of instruction) would always be scored.

When ISR researchers examined the observation data, a striking pattern emerged. Many principals failed to score items during an observation—even when vendors advised them that scoring of an item was mandatory (this pattern was least prevalent for the FFT protocol). Moreover, the observation data showed that non-mandatory items on both the TC and Marzano protocols were scored at very low frequencies. Importantly, this pattern of (non)scoring was less prevalent among ISR observers using these same tools—probably because ISR observers received

| At a Glance: Fidelity of Observation Tool Use |
|------------------|---|---|---|---|
| **Observation Tool** | **5D** | **FFT** | **M** | **TC** |
| **Item-Level Scoring** | | | | |
| Median % of times item was scored by: | | | | |
| • Principal (mandatory item) | 73% | 90% | NA | 77% |
| • ISR (mandatory item) | 94% | 100% | NA | 100% |
| • Principal (any item) | 73% | 90% | 9% | 25% |
| • ISR (any item) | 94% | 100% | 52% | 51% |
| **Median % of time raters agreed any item should be scored:** | | | | |
| • Principal with ISR observer | 77% | 97% | 10% | 38% |
| • ISR observer with ISR obs. | 95% | 100% | 72% | 46% |
| **Median % exact agreement on score (when items are scored):** | | | | |
| • Principal with ISR obs. | 51% | 50% | 40% | 42% |
| • ISR observer with ISR obs. | 50% | 46% | 56% | 61% |
| **Median ICC for scored items:** | | | | |
| • Principal – ISR pair | .16 | .07 | .08 | .09 |
| • ISR observer pair | .31 | .32 | .43 | .56 |
| **Scale Scores** | | | | |
| Estimated Correlation of Scale Scores | | | | |
| • Prin.–ISR observer pair | .22 | .60 | NA | .50 |
| Percentage of variance in scale score due to rater effects: | | | | |
| • Principal observations | 11% | 15% | NA | 38% |
| Average difference in scale scores (leniency): | | | | |
| • Principal–ISR observer | .28 | .40 | NA | .58 |

1 Marzano data do not include one district that was piloting only one section of the protocol. Components include both mandatory items (scored on all observation occasions) and non-mandatory items (scored only when appropriate to lesson activities).

2 ISR researchers were unable to calculate scale scores for Marzano data because items were scored on too few occasions by principals.

3 This is the total variance in scale scores accounted for by rater fixed effects. Given the structure of the data, the model confounds rater and school/district effects and thus should be viewed with caution.
Inter-rater reliability was low. Another key finding from the analysis of vendor databases was that when two raters scored the same lesson, there were seldom high levels of agreement about whether an item should be scored, or if an item was scored, about the actual score assigned to teachers.

At the item level, agreement among ISR observers and principals about when to score mandatory and non-mandatory items was low (the exception was FFT, where the median rate of agreement between ISR observers and principals about when to score an item was 97%). On the two other tools with mandatory items (5D and TC) the median agreement rate was about 75% for mandatory items. There was even less agreement among raters about when to score non-mandatory items. On these items, the median rate of agreement among ISR observers and principals about when to score an item varied from 40-50%, with about 10% higher agreement rates among ISR observers. Clearly, different raters had different opinions about when the characteristics of a lesson warranted scoring of non-mandatory items.

When items were scored, there were low rates of agreement about the exact score to be assigned to a teacher for the lesson being observed. Once again, the median rate of agreement about the score to be given to a teacher on an item during the same lesson varied from 40-50% exact agreement among principals and ISR observers, and from 50%-60% among ISR observers. Apparently, the additional training given to ISR obervers increased agreement rates by about 10%. \(^2\)

Low inter-rater reliability at the item level also carries through to measurement at the scale score level. For example, ISR researchers combined item scores for teachers into multi-item summary scores (using a one-parameter, multi-level, IRT measurement model). When summary scales were created by this process using data from the vendor databases, the percentage of total variance in scale scores that was accounted for by “rater effects” varied from a low of around 11% for 5D to a high of 38% for TC. These rater effects are substantial. For example, if the same teacher was observed by two administrators a standard deviation apart in the distribution of rater effects, the scores received by that teacher could differ by as much as .40 of a standard deviation across raters for TC, and around .20 of a standard deviation across these raters for FFT and 5D. Another way to see the effects of rater error on teacher scores is to note that the correlation among scale scores assigned to a given teacher by two different raters on a single occasion (one an administrator, the other an ISR observer) was quite low—ranging from .22 for 5D to .60 for FFT. \(^3\)

Principals tended to be more lenient in their scoring than ISR observers. Finally, disagreements among principals and ISR observers tended to run in a certain direction – with principals scoring items for the same lesson higher than ISR observers. For example, across principal-ISR observer pairs scoring the same lesson, principals tended to score a teacher .28 points higher than ISR observers on the 5D tool, about .40 points higher on the FFT tool, and .58 points higher on the TC tool. Moreover, the distribution of scores assigned to teachers by principals tended to be skewed positively (more scores above the mean than below). The findings that a teacher’s immediate supervisor is more lenient in scoring than an independent observer and that supervisor scores are positively skewed are quite common, not only in research on

\(^2\) A statistical measure of inter-rater agreement is the “intra-class correlation” (or ICC), which in the present case is a one-way ANOVA model, with rater scores nested within observation occasions. The ICC can be interpreted as a classical reliability coefficient that varies from a low of 0 to a high of 1. In the pilot observation data, item-level ICCs were quite low, showing (once again) that there was low inter-rater agreement in item scoring. The ICCs, however, are lower for principal-ISR observer pairs than for ISR observer pairs. One reason for this finding is that when ISR observers were paired together, their item scores had a wider spread among teachers than was found for principal-ISR observer pairs. Also, there was more agreement on item scores among ISR pairs than among principal-ISR observer pairs.

\(^3\) Readers with a technical background will want to know that the “rater effects” estimated here come from a model that had fixed effects for raters and random effects for items, occasions and teachers. Given the structure of the data, these rater effects are conflated with “school effects” and are far from an ideal estimate of rater errors in measurement.

\(^4\) The reader will note that ISR researchers did not calculate scale scores for the Marzano tool. That is because there was simply too much missing item data, a result of the fact that principals rarely coded any single item in the Marzano tool. As we discuss at a later point in this report, this is a major drawback of the Marzano tool in teacher evaluations.
teacher evaluation, but also in research on personnel evaluation more generally.⁵

Key Findings on Student Growth Tools

In addition to requiring schools to conduct classroom observations as a component of teacher evaluations, PA 102 of 2011 requires that public education agencies in Michigan: (a) establish clear approaches to measuring student growth as measured by national, state, or local assessments (or other objective criteria); (b) provide teachers and school administrators with relevant data on student growth; and (c) use student growth as a “significant factor” in evaluating a teacher’s job performance. Interviews conducted by ISR researchers with district officials suggested that districts struggled to fulfill these requirements for a number of reasons. Key findings were:

Michigan’s state testing system does not provide sufficient, timely data for use of MEAP, MME, or other state tests in teacher evaluations. One problem with Michigan’s current state testing system is that MEAP tests are given in October and, as a result, can only be used to examine student growth over a Fall-to-Fall period that is one year behind the current school year. For this reason, student growth measures based on MEAP scores will also be at least one year behind the current annual teacher evaluation cycle. Another problem is that MEAP tests do not produce vertically equated scale scores. As a result, simple gain scores in MEAP cannot be calculated and analysts must instead resort to estimation of more complex statistical models of learning gains (that involve examining the difference between a student’s current Fall test score and that student’s predicted score, where the current score is predicted from prior test scores and, perhaps, social background factors). Such models can be estimated with MEAP data (but, again, only for the year prior to the current teacher evaluation cycle). MME data present a different set of problems. It is theoretically possible to calculate a gain score using the MME (by using its ACT component), but in the current Michigan testing system, there is no available pre-test since an ACT test on the same scale is not administered in Spring of 10th grade. A final problem with the current state testing system is that only about 33% of teachers in the state teach grade levels and subject

⁵ For documentation of these patterns in research, see Rowan and Raudenbush, *op cit.*

At a Glance: Use of Student Growth Tools

<table>
<thead>
<tr>
<th>Type of Growth Tool Used in Teacher Evaluations¹</th>
<th>Elem. Schools</th>
<th>Middle Schools</th>
<th>High Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>% schools using teacher made tests</td>
<td>54%</td>
<td>69%</td>
<td>64%</td>
</tr>
<tr>
<td>% schools using locally-developed common tests</td>
<td>25%</td>
<td>23%</td>
<td>22%</td>
</tr>
<tr>
<td>% of schools using MEAP/MME/ or other state assessment</td>
<td>19%</td>
<td>30%</td>
<td>18%</td>
</tr>
<tr>
<td>% of schools using other commercial standardized test</td>
<td>44%</td>
<td>23%</td>
<td>15%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric Used for Measuring Student Growth²</th>
<th>% using pre/post-test score</th>
<th>% using students meeting learning objectives</th>
<th>% using months of growth</th>
<th>% using change in MEAP proficiency</th>
<th>% using regression-adjusted score (i.e., value-added model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of schools using o</td>
<td>80%</td>
<td>87%</td>
<td>85%</td>
<td>60%</td>
<td>13%</td>
</tr>
<tr>
<td>% of schools using c</td>
<td>60%</td>
<td>13%</td>
<td>27%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

¹ Includes only principals who reported that annual teacher evaluations included evidence of student growth.

areas that can be included in value-added modeling. Thus, for the most part, the state testing system cannot provide sufficient or timely data for the measurement of student growth in teacher evaluations.

The most commonly used measures of student growth in pilot schools came from teacher-made and other locally-developed tests. Because of the problems associated with using state test data in teacher evaluation, it is not surprising that other assessments were used. For example, 54% of elementary schools, 69% of middle schools, and 64% of high schools used teacher-made tests as measures of student growth in teacher evaluations, and 25% of elementary schools, 23% of middle schools, and 22% of high schools used locally-developed, common (benchmark or end-of-course) assessments in teacher evaluations. The Michigan Council for Educator Effectiveness argued in its final report that such tests lack desirable psychometric properties and are thus not the best measures for use in teacher evaluations.

A substantial percentage of elementary schools also used commercially-produced standardized tests as student growth tools, but this was not the case in middle and high schools. The use of standardized tests in elementary schools is perhaps best explained by the fact that many elementary schools in the pilot were already using standardized tests for monitoring
instruction, instructional grouping, and referral to compensatory and special education programming. Among the tests commonly used for these purposes were DIBELS (for early grades reading assessment) and AIMS Web and Star (for reading and mathematics). However, while these and other standardized tests can be used fairly easily to measure student growth within the year of an annual evaluation cycle (if administered on two or more occasions), they are not necessarily well-aligned to state curricular standards.

The student growth tools provided to schools as part of the pilot were not widely used as measures of student growth in teacher evaluations. A basic goal of the pilot program was to provide schools with better tools for evaluating student growth. For this reason, elementary schools were provided with paid licenses to use Northwest Evaluation Associates Measures of Academic Progress (NWEA MAP) in grades K-6 and were asked to administer various ACT tests at grades 7-12. However, only 20% of elementary school teachers in the pilot reported using NWEA MAP scores as a measure of student growth in their annual evaluation, and even fewer middle and high school teachers reported using one of the ACT tests paid for by the pilot as a growth measure in their teacher evaluation. The lack of use of ACT tests is understandable. To measure student growth with these tools required school systems to use a “value-added” approach to measuring student growth. On the other hand, simple gain scores or other growth measures could be calculated easily from NWEA MAP scores, so it is surprising that teachers (or administrators) did not use these measures more frequently.

The most common approaches to measuring student growth in teacher evaluations were not sophisticated from a psychometric standpoint and could have been applied inappropriately in local settings. The most common approach to measuring student growth was to develop a simple gain score on a locally-developed test. If these tests were “equated” (i.e., were tests of the same content), such measures make sense. But ISR researchers did not have the resources to examine the myriad of local tests used in teacher evaluations or the ways in which gain scores were calculated. Thus, the extent to which these scores were actually meaningful measures of growth is somewhat uncertain.

The other common ways of calculating “growth” from test scores in pilot schools seem even more problematic. Consider, as one example, the finding that 60% of elementary schools used “percent of students meeting learning objectives” as a measure of student growth in teacher evaluations. *Prima facie*, this is not a measure of student growth, and indeed only becomes a measure of growth if one calculates changes in the percentages of students meeting particular learning objectives. The extent to which this latter calculation was employed in teacher evaluations remains uncertain.

Similarly, 60% of elementary schools reported using “changes in MEAP proficiency” as a method of measuring learning gains. This method—described in various Michigan Department of Education documents—is a feasible way of measuring student growth using consecutive MEAP test data on students, but ISR researchers were unable to tell from surveys or district documents whether the data provided to teachers were appropriate to this task. In particular, if a teacher examined the difference in proficiency rates that resulted between last October’s MEAP administration and the current October administration of MEAP for her current students, that teacher would, in fact, be measuring changes in MEAP proficiency that occurred during a time when her students were mostly under the supervision of other teachers. To use MEAP scores appropriately as measures of student learning requires quite a bit of data processing and, as discussed above, currently involves measuring student growth for the group of pupils the teacher taught in a prior year.

The combination of multiple tests with multiple methods of assessing growth produced a staggeringly complex array of non-uniform measures of student growth in annual teacher evaluations. In particular, when ISR researchers examined the data closely, they found that 266 distinct combinations of assessments were used by pilot school teachers in annual evaluations. Moreover, the data showed the tests used to demonstrate student growth almost always varied among teachers at the same grade, in the same school, teaching the same subjects. Such diversity in assessment makes the application of a “uniform” standard for judging teachers’ success in promoting students’ academic growth nearly impossible.
Key Findings on Final Evaluation Ratings

The final step in the teacher evaluation process involved classification of teachers into one of four effectiveness ratings defined in section 2(e) of PA 102 of 2011 (i.e., ineffective, minimally effective, effective, or highly effective). The law allows school systems to use multiple performance criteria to assign these ratings, including student growth, pedagogical skill, classroom management, attendance and disciplinary record, and other accomplishments. Moreover, in AY 2012-2013 (the pilot year), the law did not specify the percentage “weight” to be given to student growth or other performance criteria in final evaluations.

Districts in the pilot study used a variety of performance criteria and gave different weights to the same performance criteria as they assigned final effectiveness ratings to teachers. In general, three classes of performance criteria were used in performance ratings: student growth, classroom instructional practice (including classroom management), and other professional criteria. We have already seen that many different assessments were used to measure student growth, not only across districts, but also among schools within the same district. However, measures of classroom practice were generally standardized within a district and usually based on the classroom observation tool in use in the district. Measures of other professional criteria also were standardized within districts, but across districts, the measures came from one of two sources—either data from the classroom observation rubrics (which sometimes measured planning and preparation for teaching and professional behaviors) and/or from locally-determined data on a teachers’ professional contributions.

Most districts used a simple, additive formula to arrive at a teacher’s total performance score and then established “cut scores” on this metric to assign teachers to the various effectiveness ratings required by law. The procedures by which a teacher received a final effectiveness rating generally proceeded through a series of steps. First, principals took the various pieces of data (observation data, test score data, other data) collected as part of the evaluation process and assigned scores to each piece of data using “scoring rubrics” standardized by the district. Thus, a principal would look at data on student growth from a teacher and then use a scoring rubric to assign an overall score for this component of the evaluation. This would then be repeated for all other pieces of data. Once these component scores were assigned, the principal would then use a standard (district-wide) formula to compute an overall score.

In all of the pilot districts, this overall score was based on what was essentially a simple, additive formula that assigned weights to scores on a given performance measure. Once total scores were computed, certain “cut points” were established to map total performance scores onto final effectiveness ratings.
At A Glance:
Percentage of Teachers Assigned to Effectiveness Ratings in Pilot Districts

Because performance criteria and “cut scores” varied across districts, the effectiveness ratings established by section 2(e) of PA 102 of 2011 did not have a consistent meaning across districts. Put differently, a teacher with the same scores on measures of student growth and classroom observations would not necessarily receive the same final effectiveness rating. Instead, two otherwise similar teachers would receive a final effectiveness rating that was based on the weights assigned to their scores and the cut points established by their districts for assigning particular effectiveness ratings. Thus, each district, in effect, had its own standard.

Partly because each district had its own standards, the percentage of teachers placed into the various effectiveness ratings mandated by law varied considerably across pilot districts. In the pilot sample as a whole, .2% of teachers (n=5) were classified as ineffective, 1.5% of teachers were classified as minimally effective, 63% of teachers were classified as effective, and 35% of teachers were classified as highly effective. But sample-wide results are not the ones worth noting. What is striking about the final assignment of ratings to teachers is just how much district-to-district variation is present in the percentage of teachers classified as “effective” vs. “highly effective.” Looking at the data above, for example, it can be seen that the percentage of teachers in each school district that received various effectiveness ratings differed strikingly across districts. In two districts (A and B), no teachers were classified as “highly effective,” whereas in two other districts (J and K), a large majority of teachers were labeled as “highly effective.”
Only two districts (E and J) identified any teachers as “ineffective,” and in most districts, very few teachers were rated as “minimally effective.”

To corroborate that such district-to-district variation was an artifact of classification formulae and cut points in districts, not real differences in teacher effectiveness, ISR researchers engaged in two types of analyses. In the first, ISR researchers examined the distribution of value-added measures for teachers in districts (as provided by SAS, one of the VAM vendors working with the pilot research program). This analysis showed that the distributions of measured teacher effects on students’ MEAP scores (as estimated for AY2011-2012 by the SAS MRM statistical model) were very similar across districts—suggesting that “real” differences on this dimension of teaching quality could not account for the differences in ratings distributions observed across districts. In fact, one district with the highest average teacher value-added scores in the sample (District B) classified no teachers as highly effective, while another district with teacher value-added scores below the sample average (District K) classified the vast majority of its teachers as highly effective. ISR researchers also examined whether teacher scores taken from classroom observation tools varied sufficiently across districts to account for the large differences in ratings distributions. Here, too, the explanation that real differences in the quality of classroom instruction were at the root of district-to-district differences in ratings distributions was implausible. Therefore, the most plausible explanation for the differences in ratings distributions shown on the previous page is that districts assigned different weights to performance criteria and set different “cut scores” for placing teachers into effectiveness ratings, and these processes, rather than real differences in the distribution of teaching quality were accounting for the observed differences in the distribution of teachers to effectiveness ratings observed among pilot districts.

Key Findings on Principals’ and Teachers’ Views of the Evaluation Process

The goal of PA 102 of 2011 was to create “a rigorous, transparent, and fair performance evaluation system” for teachers. One goal of the pilot of educator effectiveness tools was to gather data on teachers’ and principals’ views about these aspects of the teacher evaluation process as enacted during the pilot year. Key findings in this area are now described.

Principals and teachers differed in how positively they viewed the observation tools used in the pilot. In general, principals viewed the observation tools piloted by MCEE very favorably. To begin, the panel on the left-hand top of the next page shows that 76% of principals thought the tool they piloted was easy to understand and a similar percent thought the piloted tool was better than what they had used in the past. In addition, 89% of principals felt the observation tool they piloted was focused on important aspects of teaching that contribute to student learning (with just 20% reporting that the protocol omitted key aspects of teachers’ instructional practice). Perhaps for these reasons, 77% of principals felt the observation protocol they piloted provided a thorough picture of teachers’ instructional practice, and 64% felt the protocol was a good indicator of a teacher’s impact on student learning. Importantly, 50% of principals agreed or strongly agreed that they needed more information about the protocol they used.

The same table shows that teachers were less enthusiastic than principals about the piloted observation tools. Fifty three percent of teachers felt that the observation tools used in the pilot focused on key aspects of teaching that contribute to student learning. Moreover, while 62% of teachers thought the ratings assigned to them from classroom observations were accurate, 40% were worried that use of observation protocols would lead to unfair comparisons of teachers. In addition, only 47% of teachers thought the observation protocol their principal used was easy to understand, and 50% felt they needed more information about the protocol.

Both principals and teachers had favorable views of teacher conferencing activities associated with classroom observations. The table on the right-hand top of the next page shows that the majority of principals and the majority of teachers agreed or strongly agreed that pre-/post-observation conferences were focused on targeted and specific feedback goals. The majority of principals and teachers also agreed or strongly agreed that teachers were putting ideas discussed in conferences into practice. Teachers reported that conferences most often focused on issues of student engagement and instructional strategies, and less often on issues of classroom management and subject matter content.
At a Glance: Principal & Teacher Views of Observation Tools

<table>
<thead>
<tr>
<th>Percent Agree or Strongly Agree</th>
<th>Principals</th>
<th>Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation protocol focused on important aspects of teaching and learning</td>
<td>89%</td>
<td>54%</td>
</tr>
<tr>
<td>Observation protocol focused on activities that contribute to student learning</td>
<td>89%</td>
<td>53%</td>
</tr>
<tr>
<td>Observation protocol was easy to understand</td>
<td>76%</td>
<td>47%</td>
</tr>
<tr>
<td>Observation protocol can be used with just about any kind of lesson plan</td>
<td>72%</td>
<td>45%</td>
</tr>
<tr>
<td>Observation protocol provides a thorough picture of teachers’ instructional practice</td>
<td>77%</td>
<td></td>
</tr>
<tr>
<td>Observation protocol better than what I used in the past</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>Observation protocol is a good indicator of a teacher’s impact on student learning</td>
<td>64%</td>
<td></td>
</tr>
<tr>
<td>Observation protocol focuses on too many dimensions of instruction</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Observation protocol omits key aspects of teachers’ instructional practice</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Ratings assigned to me during the observation were accurate</td>
<td></td>
<td>62%</td>
</tr>
<tr>
<td>Observation protocol says more about quality of teaching than student growth data</td>
<td></td>
<td>52%</td>
</tr>
<tr>
<td>Observation protocol can be a good tool in professional development</td>
<td></td>
<td>51%</td>
</tr>
<tr>
<td>Observation protocol will lead to unfair comparisons among teachers</td>
<td></td>
<td>40%</td>
</tr>
<tr>
<td>I could use more information about observation protocol used in annual evaluation</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>

At a Glance: Principal and Teacher Views on Conferencing

<table>
<thead>
<tr>
<th>Percent of Teachers Reporting that Specific Topics Were Always or Often Discussed in Conference</th>
<th>Principals</th>
<th>Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Engagement</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>Instructional Strategies</td>
<td>71%</td>
<td></td>
</tr>
<tr>
<td>Evaluation of Student Learning</td>
<td>62%</td>
<td></td>
</tr>
<tr>
<td>Classroom Management</td>
<td>49%</td>
<td></td>
</tr>
<tr>
<td>Subject Matter Content</td>
<td>48%</td>
<td></td>
</tr>
<tr>
<td>Percent of Principals and Teachers Who Agreed or Strongly Agreed with the Following Statements</td>
<td>Principals</td>
<td>Teachers</td>
</tr>
<tr>
<td>Conferences provided specific and targeted feedback</td>
<td>90%</td>
<td>71%</td>
</tr>
<tr>
<td>Feedback in conferences was geared to specific teacher goals</td>
<td>75%</td>
<td>66%</td>
</tr>
<tr>
<td>Conferences were characterized by lively give and take</td>
<td>76%</td>
<td>60%</td>
</tr>
<tr>
<td>Conferences were stressful</td>
<td>11%</td>
<td>26%</td>
</tr>
<tr>
<td>Teachers are putting ideas from conferences into practice</td>
<td>79%</td>
<td>68%</td>
</tr>
</tbody>
</table>

At a Glance: Principal and Teacher Views on Student Growth Tools

<table>
<thead>
<tr>
<th>Percent of Teachers Who Agreed or Strongly Agreed with the Following Statements</th>
<th>Principals</th>
<th>Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student learning objectives developed by me a good way to judge the academic growth of students</td>
<td>71%</td>
<td></td>
</tr>
<tr>
<td>Locally-developed common assessments a good way to judge the academic growth of students</td>
<td>54%</td>
<td></td>
</tr>
<tr>
<td>Standardized tests a good way to judge the academic growth of students</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>Procedures used to measure student growth at this school easy to understand</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Student growth measures at this school take adequate account of student background and prior achievement</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>Percent of Principals Who Said the Following Should Be a Major Focus of Teacher Evaluations</td>
<td>Principals</td>
<td>Teachers</td>
</tr>
<tr>
<td>Student performance on standardized tests</td>
<td>47%</td>
<td></td>
</tr>
<tr>
<td>Student performance on locally-developed assessments</td>
<td>75%</td>
<td></td>
</tr>
</tbody>
</table>

At a Glance: Principal & Teacher Views of the Evaluation Process

<table>
<thead>
<tr>
<th>Percent Agree or Strongly Agree</th>
<th>Principals</th>
<th>Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals who conducted annual evaluation had subject matter expertise needed</td>
<td>69%</td>
<td>44%</td>
</tr>
<tr>
<td>Teacher evaluations provided thorough assessment of teaching performance</td>
<td>83%</td>
<td>41%</td>
</tr>
<tr>
<td>Teacher(s) improved teaching as a result of evaluations</td>
<td>84%</td>
<td>28%</td>
</tr>
<tr>
<td>Annual evaluation an important basis for setting professional development goals</td>
<td>87%</td>
<td>42%</td>
</tr>
<tr>
<td>Teacher evaluations more about personnel decision making than improvement</td>
<td>13%</td>
<td>35%</td>
</tr>
<tr>
<td>Teacher evaluations simply a matter of ‘going through the motions’</td>
<td>3%</td>
<td>31%</td>
</tr>
<tr>
<td>I spent too much time this year on the teacher evaluation process</td>
<td>47%</td>
<td>46%</td>
</tr>
</tbody>
</table>
The majority of teachers and principals agreed or strongly agreed that conferences were characterized by a “lively give and take” and that teachers were attempting to put ideas raised in conferences to practice. As with views of teacher observation tools, however, principals tended to be more positive about these issues than teachers.

Principals and teachers strongly favored the use of locally-developed assessments over standardized tests as a means of assessing student growth in teacher evaluations. Indeed, as the table on the previous page shows, 71% of teachers agreed or strongly agreed that student learning objectives they developed were a good way to judge the academic growth of their students, and 75% thought student performance on locally-developed tests should count as a major factor in teacher evaluations. By contrast, only 9% of teachers agreed or strongly agreed that standardized tests were a good way to judge the academic performance of their students, and just 47% of principals thought standardized test results should count as a major factor in teachers’ evaluations.

Despite the widespread use of teacher-made and locally-developed tests, many teachers had concerns about the student growth measures used in their annual evaluations. For example, as the table on the right-hand side of the previous page shows, only 40% of teachers agreed or strongly agreed that they understood the procedures used to measure student growth in their annual evaluations, and 27% felt that such measures did not take adequate account of students’ home background and prior achievement. Moreover, teachers were far less positive about the quality of the teacher evaluation process as a whole than were principals. This can be seen in the table at the bottom of the previous page. It shows that 69% of principals (but just 44% of teachers) thought the individuals conducting teacher evaluations in their school had the necessary subject matter expertise. The table also shows that 83% of principals (but just 41% of teachers) thought the teacher evaluations conducted in the pilot year provided a thorough assessment of teaching performance. In addition, the table shows that 84% of principals (but only 28% of teachers) thought the evaluation process was leading to improvements in teaching performance. Finally, 87% of principals (but just 42% of teachers) thought that annual evaluations conducted in the pilot year could be used to set professional development goals.

Still, principals and teachers did not view teacher evaluation practices as mere exercises in bureaucratic procedure. For example, just 13% of principals and 35% of teachers agreed or strongly agreed that teacher evaluations in their school were more about making personnel decisions than promoting teachers’ professional growth, and only 3% of principals and 31% of teachers agreed or strongly agreed that teacher evaluations were simply a matter of going through the motions. However, nearly half of all principals and teachers agreed or strongly agreed that they spent too much time on the teacher evaluation process.
Chapter 3: Improving the Teacher Observation Process

In addition to asking ISR to examine how teacher evaluations were conducted in pilot schools, MCEE asked ISR researchers to explore how teacher evaluation practices might be improved in Michigan. This chapter addresses a central question raised by MCEE: Do the data from the pilot project suggest better ways to conduct classroom observations and use data from this process in annual teacher evaluations?

Improving the Use of Classroom Observation Data

The findings reported thus far suggest that the classroom observation data gathered during the pilot were subject to three problems: (1) principals (and other administrators) were not scoring all items on an observation tool, even when the vendor advised that scoring of an item was expected; (2) there were low levels of inter-rater reliability; and (3) principals (and other administrators) expressed concerns about the amount of time they were devoting to the teacher evaluation process—much of which was devoted to conducting classroom observations.

These issues raise three questions:

- How many classroom observations is it reasonable to expect administrators to conduct in order to obtain a good picture of a teacher’s instructional practice?

- Is it really necessary to score all items on a protocol, or can we just score a select few? and

- Is there any way to adjust the scores that teachers receive on classroom observations for lack of inter-rater reliability?

The first way ISR researchers addressed these questions was through an application of Generalizability (or G) theory. In essence, G studies examine how different errors in measurement affect measurement reliability. Using G theory, ISR researchers investigated three potential sources of error: (1) items not being rated by principals; (2) principals not conducting enough classroom observations; and (3) raters disagreeing about the scores to assign to the same lesson.

The G study conducted by ISR researchers showed that items, occasions, and raters were significant sources of error in the pilot classroom observation measures. Items can be a significant source of error variance in ratings because each item adds additional information about a teacher’s instructional practice. Thus, a teacher’s score for a given observation might depend critically on the items used to rate the teacher. In addition, occasions can be a significant source of measurement error because the instructional practices used by teachers might vary as a matter of deliberate choice (as, for example, when teachers change their practice at different points in an instructional unit, pursue different instructional goals and objectives, etc.). Teaching practices also change as a simple matter of random variation. Finally, as discussed earlier, raters can be a significant source of error because not all raters will score a lesson in the same way.

Overall, the G study results (shown on the current page) suggested that each of the observation tools...
that ISR researchers examined had reasonable levels of reliability under the conditions of use in the pilot research. But the data also showed that each tool varied in the magnitude of particular errors. For example, item variance was larger for 5D and FFT than for TC; but rater variance was more pronounced for TC than for FFT and (especially) 5D. Overall, TC appears to contain more stable teacher variance than the other two tools, but it buys this scaling property by measuring very general aspects of teaching. As a result, it might not be as useful as the other protocols for measuring variation in instructional practice at a fine-grained level of detail.

The G study provides some guidance about the number of observations that need to be conducted to obtain reliable measures from classroom observation tools. The question of how many observations to conduct as part of the teacher evaluation process is especially important because we know from the survey data presented earlier that conducting observations was time-consuming and that many principals felt they were spending too much time on the evaluation process. The question we now address is the extent to which the reliability of classroom observation measures is affected by the number of times a teacher is observed. Relevant data are shown in the graphs immediately to the right. The G study results imply that:

- The greater the number of observations conducted on a teacher, the more reliable (and precise) will be any measure of that teacher’s instructional quality.

- However, the biggest gains in measurement reliability come when moving from one observation to about four observations. Improvements in reliability and precision will be slower as observations beyond four are conducted.

The reader can see this by looking at the graphs to the immediate right. These graphs show changes in reliability (and the standard error of measurement [SEM]) for each scale as the number of observations increases. For analytic purposes, the graphs assume the number of items on each of the scales was 32 for 5D, 10 for FFT, and 4 for TC. The graphs assume a
single rater conducted the observations. The graphs use the variance components from the G study to chart how measurement reliability (and precision of measurement, denoted by the SEM) will vary as the number of observations increases. Clearly, conducting more observations improves measurement reliability, but as the graphs show, improvement slows after about four observations.

The G study also provides guidance about the number of items that need to be scored to obtain a reliable measure of teaching quality from an observational tool. This question is important, for as we discussed earlier in this report, many principals in the pilot did not score all of the mandatory items on a scale. We now use the G study results to see how scoring of different numbers of items affects reliability of measurement. In this example, we assume that a single rater observes a teacher on four occasions, and our analysis examines the reliability of one-parameter, multi-level IRT scale scores that would result if the number of items on that scale varied.

The results of this analysis are shown in the graphs on the right-hand side of this page. These graphs show that:

- **In general, the more items scored on an observation protocol, the more reliable (and precise) the resulting measure of a teacher’s instructional quality will be.**

- **However, improvements in reliability and precision occur more slowly as the number of items scored increases beyond about 5 or 6 items.**

Importantly, these finding imply that through careful psychometric analysis, it might be possible to choose a subset of items from the larger item pool on a protocol and still be able to reliably discriminate among teachers’ scored levels of instructional quality. As examples, the data show that if we cut the 5D protocol from 32 scored items to about 10 items, reliability of measurement would fall from about .66 to about .6, and that cutting the number of scored items on FFT from 10 to 6 would not change reliability at all. The trick to limiting the number of items in a protocol, however, is to be sure to include items in the reduced
form that come from the full range of item difficulties.\(^{6}\)

There are potential advantages and disadvantages to using well-designed “short forms” of an observation instrument versus the vendor-recommended long form. For example, an advantage of a short form could be that by limiting the number items to be scored, principals would find it easier to learn how to use an observation tool (and would end up using it with more fidelity). The disadvantage of a short form is loss of qualitative information. As discussed earlier, the items included in the observation tools piloted in Michigan tended to provide information about particular aspects of teaching, and in the tools with more items, this allowed measurement of teaching practice at a more “fine-grained” level. It is possible that such fine-grained information is important to teacher learning and improvement, and this would argue against cutting the number of items included on a given observation protocol, even if a short form had reasonable reliability and precision.

The G study also provides guidance about the number of raters needed to obtain a reliable measure of teaching quality from an observational tool. Relevant data are presented in the graphs on the left-hand side of the next page. An answer to the question of how many different raters are needed to conduct observations is especially important given our earlier discussion of rater error in observation data. When rater error is present, it is desirable to have more than one rater observe in a classroom for two reasons. The first is that it might be possible to increase measurement reliability (holding constant the number of occasions) simply by adding raters. The second is that we can use data from observations by multiple raters to correct observed scores for rater error. The first approach handles rater error by averaging across raters; the second approach handles rater error by statistical control. Importantly, using multiple raters to conduct observations can be costly and present logistical problems, especially in the circumstance where all observations are conducted in real time by one or more administrators. Nevertheless, it is worth investigating the effects of using more than one rater during classroom observations if for no other reason than to understand the consequences of using the prevailing pattern of having only a single rater conduct classroom observations on a teacher.

We begin this discussion by examining how measurement reliability would change if a teacher was observed on a fixed number of occasions (set here at \(n = 4\)) using the standard observation tool, but on each occasion, we added another observer. The results of this examination are shown on the graphs on the left-hand side of the next page. Looking closely at these graphs, one can see that:

- **Adding more observers on each of four observation occasions increases measurement reliability.**
- **However, the biggest increase comes from adding a single observer on all occasions. After that, improvements in reliability come more slowly as more observers are added.**

The reader should note that this additional observer need not be the same person on every observation occasion. Indeed, if a school added one additional observer on every occasion, but that person was different each time, there would be positive benefits to measurement beyond improved reliability. In fact, this also would correct for rater bias, especially if the extra individuals were assigned at random from the pool of available raters (e.g., principals and administrators) in a district.\(^{7}\) The problem, of course, is that using multiple raters to increase measurement reliability (and correct scale scores for rater error) does not seem feasible in the usual school district context, where administrators already report being overburdened by conducting observations on the teachers they must evaluate.

In the absence of using multiple raters in classroom observations, it will be especially important to address the potential bias in classroom observation data that results from rater errors in scoring. The graphs on the right-hand side of the next page illustrate the magnitude of these errors. For example,

\(^{6}\) In fact, ISR researchers produced a set of analyses of this process for the FFT and SD observation tools. The analysis (which will appear in our technical report) showed that, for both tools, it was possible to create a 5-item scale that represented an array of instructional dimensions. A 5-item scale for SD had a reliability of .6 versus .66 using all items, and the 5-item FFT scale had a reliability of .795 versus .797 using all items. We did not reduce the items from the TC tool, since our scales to this point have only used the “four corners” items. Moreover, we did not conduct this analysis for the Marzano tool since there was too much missing item data to permit disciplined scaling.

\(^{7}\) By assigning additional raters at random, it would be possible to statistically separate rater from school effects in measurement models, producing not only improved precision, but also improved accuracy in scale scores.
At a Glance: Measurement Reliability as a Function of Number of Observers on Each Occasion

Reliability and SEM by Number of Observers: SD

Reliability and SEM by Number of Observers: FFT

Reliability and SEM by Number of Observers: Thoughtful Classroom

At a Glance: The Magnitude of Rater Effects Among Principals*

*These graphs show the distribution of scores that a hypothetically “average” teacher would receive if observed on the same occasions by all of the principals in the pilot sample. The graphs are based on estimates of rater fixed effects in the one-parameter, IRT model described previously. One can see from the graphs that the same teacher would receive different ratings depending on the principal conducting the observations.
they show the distribution of scores that a hypotheti-
cally “average” teacher would receive if he or she was
observed on the exact same days by each of the prin-
cipals in the pilot study. In the data for 5D, the aver-
age principal would assign that teacher a score of
about 2.8, but as the histogram on the graph shows,
many other principals would assign a higher or lower
score to that teacher. Those scores would range from
a low of about 2.3 to a high of about 3.4, with 75% of
scores being clustered in the range of 2.6 to 3.0. For
FFT, rater effects are shown as distributed around an
average of about 3.3, but vary from a low of about 2.4
to a high of about 3.75, with the majority of scores
ranging from about 3 to 3.5. For TC, the rater effects
are distributed around an average scale score of about
3.5, and are distributed fairly evenly across a range of
about 3 to 4.

The reader might wonder if the rater effects shown in
the graphs are substantial enough to warrant concern.
If considered as standardized “effect sizes” (a com-
mon metric in research), the rater errors observed in
the pilot data are not particularly large. For example,
two principals who are a standard deviation apart in
the distribution of rater effects will assign the “aver-
gage” teacher in the pilot sample a score that differs by
.40 of a standard deviation on the TC scale and
around .20 of a standard deviation for the FFT and 5D
scales. These are generally considered to be medium
to small effect sizes in educational research.

However, even small differences in scoring can have
important consequences for a teacher’s assignment to
a particular effectiveness rating. For example, imag-
ine an average teacher being rated by two principals
using the 5D protocol, both of whom score that teach-
er’s instruction with error. Suppose further that this
imaginary teacher’s “true” score on the 5D protocol is
at the mean of the score distribution (i.e., 2.8) but that
one principal is “lenient” and assigns a score of 3.2 to
her teaching, while another principal is “severe” and
assigns a score of 2.4 to the observed teaching. Sup-
pose further that the teacher works in a district where
she must score above 3.0 on the observation protocol
in order to be classified as “effective” in her annual
rating. Using the scores assigned by the one rater
who scored her teaching as a 3.2, this teacher is classi-
fied as effective, even though her “true” score is 2.8.
Therefore, the illustration shows that even seemingly
small rater errors of the sort shown in the figures can
have strong implications for teacher evaluations.

**One way to correct for rater errors in the teacher
evaluation process is through statistical adjustments
to observation scores.** The most principled adjust-
ment for rater error would be to randomly assign a
district’s pool of administrators to conduct classroom
observations in all of the schools in the district. Un-
der randomization, lenient and severe raters
would be randomly distributed across teachers, and while
rater errors would decrease precision of measure-
ment, assigned scores would be largely unbiased (due
to random assignment). This is how most research
projects operate. However, most districts in the pilot
assigned a single (fallible) observer—typically the
school principal—to conduct all of the observations
on a given teacher.

When every teacher has been observed by only a sin-
gle rater, districts can attempt to correct for rater error
in one of two ways. One way would be to center
teacher observation scores in each school around the
mean score assigned by that school’s principal. Using
this approach, one simply subtracts the school mean
observation score from a teacher’s assigned observa-
tion score and then compares teacher scores within
schools. Alternatively, one could adjust a teacher’s
observation score for rater error by reference to the
grand mean of ratings in a district (or the state). Sup-
pose, for example, that there were 5 principals in a
district, and each principal rated 25 teachers. One
could calculate the mean of all ratings in the district
(the so-called “grand mean”) and then deviate each
principal’s mean rating from the grand mean. Leni-
ent principals would have average scores above this
mean (e.g., +.2), whereas severe principals would
have scores below this mean (e.g., -.3). One could
then use this information to adjust teachers’ scores.
Using this latter approach, adjusted scores would
remain in the original scoring metric and comparisons
in adjusted scores could be made across schools.8

**As a supplement to statistical adjustment, any ad-
ministrator who conducts classroom observations
should be required to engage in “calibration” training
for use of an adopted observation tool.** The goal of
this training is to minimize rater errors by having
principals learn how to assign scores that are close to
the ones that would be assigned by an expert rater
carried out the same classroom observation. In prac-
tice, calibration training typically involves having
principals observe and score videos of classroom

8 In the first method, a teacher’s adjusted score = (teacher’s score
– school mean). In the second method, a teacher’s adjusted score
= (teacher’s score – principal’s rater effect), where the principal’s
rater effect = (grand mean of ratings - principal’s mean rating).
teaching until the scores they assign show only very small departures from scores assigned to the same videos by “expert” raters. Such training, it should be noted, is offered by all of the observation tool vendors working in the pilot program and should be considered as a mandatory aspect of training for any state-approved observation tool. However, calibration training will not usually eliminate rater error, and absent random assignment of multiple raters to classroom observations, rater error will almost certainly be present in the observation scores of teachers. As a result, education authorities responsible for conducting classroom observations should attempt to introduce simple, statistical corrections for rater error when they use observation scores for evaluation purposes.
Chapter 4: Are Value-Added Models an Option for Michigan?

As part of its pilot of educator effectiveness tools, MCEE asked ISR researchers to explore whether value-added modeling (VAM) might be a practical approach for the state to fulfill the “student growth” tool requirements of PA 102 of 2011. In simplest terms, value-added modeling attempts to measure a teacher’s impact on student achievement (the “value” he or she adds) apart from other factors that influence students’ achievement, such as individual ability, socio-economic factors, and peer influences. The relevance of value-added modeling to PA 102 of 2011 is considerable given data reported in Chapter 2 of this report. That chapter described the relatively unsystematic approaches to measuring student growth that were developed in pilot school systems, due in part to the lack of timely availability of state assessment data for measuring student growth. Value-added modeling (VAM) represents one way to address this issue. It would use Michigan’s state assessment system to develop fair and uniform standards for measuring teachers’ impacts on student achievement.

This chapter discusses ISR’s work with three VAM vendors and examines the feasibility of deploying value-added measures of teaching effectiveness based on Michigan’s state testing data for use in teacher evaluations.

VAM Pilot Data and Procedures

To address this issue, ISR contracted with three vendors, each of which has had extensive experience conducting value-added analyses for state and local education agencies. The vendors were: the American Institutes for Research (AIR), Education Analytics (EA), and SAS.

A pilot of VAM procedures was conducted between January 2013 and October, 2013. During that time, ISR researchers asked the Center for Education and Performance Information (CEPI) to send ISR all currently available data (described below) needed to estimate value-added models of teaching effectiveness with MEAP data. ISR then forwarded these data to vendors. Using this process:

The three vendors were sent three years of MEAP data on all Michigan students taking any MEAP test in Fall 2009, Fall 2010, and Fall 2011. Vendors were then asked to use these data to develop value-added models of student gains in achievement between Fall 2010 and Fall 2011. Note that this time interval is two years behind the annual teacher evaluation cycle for the pilot year of 2012-2013. This lag was due to delays in access to more recent MEAP test results.

Each vendor also was sent data from the Michigan Student Data System (MSDS) and the end-of-year Registry of Education Personnel (EOY REP) for the years 2009, 2010, and 2011. Importantly, the MSDS data sent to vendors included a state developed Teacher-Student Data Link (TSDL) for the school years 2010-2011 and 2011-2012, as well as data on students’ social background and educational status. EOY REP data provided a list of grades and subject areas in which each registered teacher was teaching for 2009, 2010, and 2011.

Using MEAP, TSDL and REP data, vendors sought to identify the teacher(s) who taught each tested student over the time period Fall 2010 – Fall 2011. This was a complex matching procedure in which vendors took each tested student’s MEAP score for a given grade/subject, then obtained that student’s TSDL for the 2010-2011 school year, then verified that the teacher(s) listed as teacher of record in the data were also listed as having taught in the tested curriculum area in REP data.

Once teacher-student linkages were created, vendors engaged in “value-added” statistical modeling. These models created various estimates of each student’s gains in achievement (in a tested area) over the period Fall 2010 – Fall 2011 and attributed some portion of these gains to the teacher(s) to whom they were linked. These apportionments are called “teacher effects” on student achievement in the remainder of this chapter.

Importantly, over the course of the pilot: (a) each VAM vendor used slightly different business rules to
process data prior to value-added modeling; and (b) each VAM vendor used different statistical models to estimate teacher effects on student achievement. Under ordinary business circumstances, each vendor would have preferred to consult extensively with its client prior to engaging in both these steps, but ISR researchers did not want to dictate how data were to be processed or the type(s) of value-added models to be estimated by vendors. Instead, ISR researchers asked each VAM vendor to develop a set of data processing procedures and to estimate a variety of value-added statistical models that they might recommend to Michigan stakeholders. In the end, this approach proved fruitful, for it illustrated the various tradeoffs that Michigan legislators (or local districts) must consider as they decide whether and how to implement value-added modeling of teacher effectiveness as a tool for teacher evaluation.

Statistical Models Used by VAM Vendors

The first issue that policy makers seeking to use value-added modeling will need to address is the type of value-added model (VAM) they want vendors to estimate. A thorough review of this complex topic is beyond the scope of this report. However, we can begin this chapter by briefly describing the two general approaches that vendors took to value-added modeling:

One approach to VAM analysis involves estimating what has been called a “growth model.” This was one approach implemented by SAS for the pilot project.

As implemented by SAS, this approach uses data from multiple years of student testing and generally estimates the gains in achievement that groups of students experience over time. In the SAS approach, teacher effects are conceptualized as “deflections” that move students’ realized gains upward or downward during the time period when they are taught by a particular teacher. Importantly, the SAS approach to VAM estimation has been called a “layered” model, meaning that students’ gains in achievement are assumed to be affected not only by students’ current teachers, but also by past teachers (whose effects on their former students’ achievement are assumed to persist over time). Thus, the teacher effect on student achievement gains estimated by SAS has been adjusted for the effects of previous teachers on a given teacher’s students. Moreover, all of the teacher effects estimated in the layered model are updated annually as new data are added.

A second approach to VAM analysis involves estimating what is typically called a “covariate adjustment” model. This was the primary approach taken by AIR and EA in the pilot (and it also was used by SAS in some analyses). Unlike the “growth” model, the covariate adjustment model focuses, not on gains in achievement over multiple years, but rather on a student’s test score at a single point in time (for convenience, let us call this single point in time the student’s “current” achievement). A covariate adjustment model essentially uses a linear regression analysis to predict a student’s current achievement from many covariates, including a student’s past achievement levels. Conceptually, this model assumes that students whose current test scores are above what is predicted by the statistical model have experienced more academic growth than students whose current scores are below what is predicted from the statistical model.

Importantly: (a) all of vendors can report teachers’ effects on students’ achievement as effects on students at a specific grade, for a specific subject, in a specific year; and (b) all vendors can combine these estimates to provide an overall estimate of a teacher’s effectiveness (across multiple grades, subjects, and years). This is important, for a teacher might be more or less effective at different grades, for different subjects, and in different years, but an education authority might also want a summary of teacher effectiveness that combines many separate estimates into a single average effectiveness rating. The SAS “layered” model obtains teacher effect estimates by using all available data at once: the AIR and EA covariate adjustment models estimate teacher effects separately by grade, subject, and time point, and then use sophisticated procedures to average across these estimates to get a composite score for teachers.

All of the models estimated by VAM vendors controlled for multiple prior-year test scores in predicting students’ expected gains or test score. In fact, this procedure is what gives rise to the term “value-added” modeling. In essence, value-added models are assuming that a student’s achievement gain and/or current achievement level is affected by that student’s prior achievement levels. In this sense, the VAMs do not evaluate teachers based on actual gains in achievement or the actual achievement level of students. Instead, VAMs evaluate teaching effectiveness in reference to gains or achievement levels that have been “adjusted” for students’ prior levels of (or gains in) achievement, usually as measured in more than one subject, and typically as measured by data
from more than one prior year. This adjustment for prior test scores is important because it means that a highly effective teacher is not always one whose students experienced the highest gains in achievement (or ended the academic year with the highest achievement scores). Rather, highly effective teachers produce achievement gains or end-of-year achievement scores that are greater than would be predicted based on the prior levels of achievement of the students they taught. In this sense, value-added models measure whether a given teacher is more or less effective than teachers of students with similar achievement histories.

All of the VAM vendors also estimated statistical models that controlled for characteristics of students other than prior achievement. This is important, for a continuing controversy in value-added modeling is whether or not to control for characteristics of students (such as students’ free lunch status, ethnicity, special education status, or other characteristics) when estimating a teacher’s effects on students’ achievement. In the pilot, using MEAP data, the addition of these student-level covariates typically resulted in very little change in teachers’ estimated effectiveness. However, many argue that since poverty and ethnicity can affect students’ achievement, estimates of teacher effects on students’ achievement should take these factors into account. When such variables are entered into value-added models, value-added models are measuring whether a given teacher is more or less effective than teachers of students with similar achievement histories and other personal characteristics (like social and economic status).

VAM vendors also examined the extent to which estimates of teacher effects were sensitive to the aggregate composition of classrooms. The addition of classroom-level covariates into value-added models is another controversial issue in the field of education. Some would argue that group-level properties, such as the percentage of high-poverty students in a class or the average levels of prior achievement of students in a class (or many other variables) might affect students’ achievement outcomes, largely through the process of “peer effects,” where a student’s classmates influence that student’s learning. Vendors participating in the pilot explored the extent to which inclusion of these classroom-level covariates affected VAM estimates for teachers, and as we show at a later point in this chapter, there was evidence from vendor analyses that these covariates did affect value-added estimates for teachers. A problem, however, is that researchers cannot say with certainty whether the correlation between group-level covariates and value-added measures is the result of peer effects on students or the selection of less effective teachers into various social settings. As a result, VAM vendors typically argue that policy makers must decide whether or not to adjust for particular group-level covariates (like percentage of high-poverty students in a classroom or the percentage of special education students in a class) since there is no clear scientific justification for or against doing so.

Finally, VAM vendors differed in how they estimated teacher and school effects on students’ achievement. In general, the VAMs estimated by SAS used random effects models to estimate teacher effects and did not control explicitly for school effects. EA’s VAM analyses usually estimated teacher “fixed” effects and did not estimate an explicit parameter for school effects. AIR used a random effects model to estimate teacher effects that included a random school effect. In these models, AIR added 50% of the estimated random school effect to a teacher’s random effect on student achievement to produce its value-added score for a teacher.9

Data Processing Issues Prior to VAM Analyses

Because there are so many variants of value-added models, it is very important for educators working with VAM vendors to engage in a planning process in which decisions are made about the type(s) of VAMs to be estimated for policy purposes. However, once a modeling option has been chosen, VAM vendors will typically proceed to the implementation phase of their work. This phase involves using the test score (and other) data provided by a state to estimate teachers’ effects on students’ achievement using the method(s) selected for VAM analysis.

The salient feature of the implementation phase of VAM analysis is that VAM vendors must work with data systems that are inherently complex. The data used in VAM analyses usually come to vendors as many different data sets that include data on students, data on teachers, and data on links between teachers and students. In working with these data sets, VAM vendors always use a set of “business rules” that determine how to match data across data

9 The rationale for this approach is discussed in AIR’s technical report. It should be noted, however, that AIR is not necessarily committed to this approach. Instead, this is an approach that it has used to calculate value-added scores for teachers in the State of Florida. AIR used this approach in the pilot simply to demonstrate an option for dealing with school effects in VAMs.
sets and determine which students and teachers are ultimately included in any VAM analysis.

The data processing phase of any VAM analyses is important, for a VAM analysis is only as good as the data on which it is based. For this reason, an important question addressed by ISR researchers was the extent to which data collected by the State of Michigan was of sufficient quality to proceed with VAM analyses. As discussed at the beginning of this chapter, the data sets sent to vendors were: (a) MEAP test scores; (b) data on student characteristics and teacher-student linkages taken from the Michigan Student Data System (MSDS); and (c) data on teacher characteristics (including course assignments) taken from the state’s Registry of Education Personnel (REP).

Overall, VAM vendors reported that the quality of MEAP test score data was sufficiently high for sophisticated VAM analyses. MEAP tests were judged to be reasonably aligned to state curriculum frameworks, to have acceptable psychometric properties, and to result in normally distributed test scores for specific populations of grade/subject test takers. One VAM vendor did express concerns about the use of a Fall-to-Fall testing period (as opposed to the more common Spring-to-Spring period used in other states) arguing that the Fall-to-Fall testing period might not control for selection effects in VAM data as adequately as Spring-to-Spring testing data. In addition, students at the very floor and very ceiling of the test score distribution created problems if VAM models took errors in measurement into account. Otherwise, VAM vendors experienced few problems working with MEAP’s Fall-to-Fall testing data.

However, only about 33% of classroom teachers in Michigan are teaching classes in MEAP-tested subject/grade combinations where VAM scores might be estimated. Therefore, not all Michigan teachers can be evaluated using state assessment data. To see this, consider the percentage of all teachers in the state who were listed in the state’s 2011 end-of-year Registry of Education Personnel (REP) as teaching any MEAP-tested subject at grades 4-8. In theory, one could estimate a VAM score for these teachers (although this is an optimistic scenario). The table to the right shows the relevant data. Teachers at 3rd grade, teachers of 9th grade social studies, and teachers of 11th grade MME tested subjects are not shown here because these teachers lack sufficient data for calculation of VAM scores. The numbers shown in the table

<table>
<thead>
<tr>
<th>At a Glance: Michigan Teachers for Whom VAMs Can Be Estimated*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # of Teachers in Michigan</td>
</tr>
<tr>
<td>Total # Teachers of a MEAP Tested Subject</td>
</tr>
<tr>
<td>• Reading</td>
</tr>
<tr>
<td>• Mathematics</td>
</tr>
<tr>
<td>• Writing</td>
</tr>
<tr>
<td>• Science</td>
</tr>
<tr>
<td>• Social Studies</td>
</tr>
<tr>
<td># Unique Teachers of MEAP Tested Subjects Grades 4-8</td>
</tr>
<tr>
<td>% of All Teachers Who Could Have a VAM</td>
</tr>
<tr>
<td>— 33%</td>
</tr>
</tbody>
</table>

* The data in this table are estimates based on the number of unique teacher IDs found in 2011 EOY REP data after attributing subject teaching assignment to IDs using subject coding decisions that are very similar to those used by VAM vendors. Not all personnel listed as “teachers” are included here. The data are for teachers teaching any of the subjects listed above at MEAP tested grades 4-8. The assumption is that it is possible to estimate a VAM score for these teachers. The counts listed in the table exclude categories of personnel such as teacher consultants, various professional specialties (e.g., speech therapists), and all paraprofessionals.

<table>
<thead>
<tr>
<th>At a Glance: Number of Eligible Teachers Who Had VAMs Reported for MEAP Math and Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
</tr>
<tr>
<td>Grade</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

*These are provisional counts as of 12/11/2013 and are subject to additional verification by VAM vendors and ISR. Although provisional, the numbers in the table are unlikely to change by large fractions. They therefore illustrate how data quality and data processing procedures can reduce the number of teachers for whom VAM measures can be reported. The SAS column reports number of teachers for the MRM intra-year analysis with no student covariates other than prior test scores. The EA column reports the number of teachers reported for “method 1,” a covariate adjustment model with no student covariates other than prior test scores. These numbers could change with additional data processing. The AIR column reports numbers for “model A,” a covariate adjustment model with no student covariates other than prior test scores. This figure is based on ISR counts, not AIR counts.
are rough estimates based on assumptions about types of VAMs that might be estimated. They nevertheless suggest the obvious point that if policy makers in Michigan are to develop value-added measures of teaching effectiveness for all teachers, including teachers at grades K-3, 9-12, and teachers of “non-academic” subjects, the state testing system will have to be expanded considerably.

A second point is this: In the normal process of working with CEPI data, a certain percentage of teachers who teach a MEAP-tested subject cannot be included in a VAM analysis for a variety of reasons, thus further reducing the number of teachers who can be evaluated using value-added measures. This loss of teacher cases is demonstrated in the lower table on the previous page, which shows the consequences of data processing decisions for the number for teachers on whom VAMs were calculated. To construct this table, ISR researchers took data from the EOY 2010-2011 REP data and counted the number of teachers coded as teaching in various subject area codes at a grade. ISR researchers then used the data sets sent from VAM vendors to provide information on the number of teachers with VAM scores.

One thing that is apparent from the table is the discrepancy between the numbers of teachers ISR researchers coded as teaching reading and mathematics in grades 4-8 using EOY REP 2010-2011 data versus the number of teachers for whom VAM vendors reported value-added scores. This discrepancy occurred across all VAM vendors and almost always produced a seeming loss in teachers from the population on which value-added measures could have been calculated to the population on which measures actually were calculated. ISR researchers remain unsure of the exact causes of this seeming loss of teachers across data sets. But it should not be seen as a reflection of errors on the part of VAM vendors. VAM vendors were completely transparent about the business processes they used to include teachers and students in their analyses, and they worked diligently to make appropriate data linkages. From the ISR perspective, the loss of cases probably results from an interaction between the quality of data submitted to VAM vendors and the unique “business rules” used by ISR and vendors for assuring responsible reporting of VAM results.

VAM vendors presented a different analysis of the case loss process. They typically begin their analyses of case loss using student test score data. Once student test score data were in hand, for example, VAM vendors searched for the student-teacher links in the MSDS for tested students, and then turned to the EOY REP data to verify that teachers who were listed in the linkage data were also reported to have taught the relevant grade/subject combination. In essence, it appears that VAM vendors work from a target population of tested students, whereas ISR considers the EOY REP data to be the target population.

Looking at the problem of missing data from the VAM vendor perspective reveals where teacher case loss occurs as VAM vendors match students to teachers and verify that teachers are teaching at the relevant grade/subject combination. At this stage of the analysis, VAM vendors report a loss of 20-30% in teacher cases (depending on vendor, subject, and grade). About half this loss results because vendors typically drop teachers from specific subject/grade reporting when they are linked to fewer than 10 students at that grade/subject combination. The remainder of the loss occurs from missing data issues, especially for vendors using a covariate adjustment model, who drop students with missing data on prior test scores.

Vendors’ data processing work highlights a significant problem in Michigan education data. In the current data system, many Michigan teachers who work at tested grades and teach tested subjects can be linked to only a very small number of students. For example, in AIR data, 30% of teachers had 10 or fewer students linked to them for analysis of mathematics and reading teaching effectiveness. The problem was prevalent at all grades, but was especially aggravated at grades 7 and 8, where 25% of teachers had 2 or fewer students linked to them. In the VAM reports, these teachers do not receive a VAM score (due to small number of students), causing significant case loss in VAM reporting.

Overall, VAM vendors were cautious about the quality of teacher-student data links and recommended that Michigan investigate possible improvements to TSDL data collection. Each vendor was quick to acknowledge that Michigan was in the early stages of developing a teacher-student data linkage, and each vendor was transparent about the coding decisions they made in linking teachers to students for the purposes of VAM analysis. The processes used by each vendor were thorough, but two of three vendors recommended that Michigan do more to investigate the quality of TSDL data, and two of three vendors also recommended implementation of a roster verification step as part of the teacher evaluation process.
The Pilot Roster Project

Because the validity of any value-added measure of a teacher’s effectiveness rests crucially on identifying the subject/grade combinations taught by a teacher and identifying the students a teacher taught over a school year in those subject/grade combinations, the Michigan Council for Educator Effectiveness asked ISR researchers to conduct a pilot project to test a method for gathering accurate data on courses taught by teachers and students enrolled in those courses. In this report, this activity is called the “roster pilot.”

- The goal of the roster pilot was to produce for each participating teacher an accurate list of courses taught by that teacher and the students enrolled in those courses over an entire school year and in doing so, to provide a convenient way for teachers to verify that roster data were accurate.

The roster pilot’s main advance was to develop a web-based interface that allowed teachers and principals to verify rosters (a major feature of SAS’s implementation of VAM analysis in states where it works). The use of this interface began with ISR operations personnel requesting each district to send “roster” data much like that reported to the state to ISR for processing. ISR then used these locally-provided data to construct a list of all the classes a given teacher taught in a semester (or trimester), and for each class, all of the students the local education agency listed as being enrolled in that class.

The initial data exchanges between ISR and LEAs proved difficult. One problem was that districts in Michigan used a variety of software for student reporting; another was that district capacity for making data exchanges was quite variable; yet another was that schools varied in the way their calendars were organized and classes were formed (some schools regrouped frequently, others on a trimester basis, still others on a semester basis). As a result, ISR operations personnel (and some LEA personnel) had to work repeatedly to clarify the nature of the data being exchanged and to prepare rosters for verification by teachers and principals.

As part of this process, ISR researchers recruited 52 teachers and 17 principals to participate in a roster verification process using the web-based application described above. Each teacher and principal was provided a web URL and a password, and after accessing the URL through the assigned password, that teacher or principal could view and modify his or her assigned roster(s). A roster included: (a) a list of classes the teacher was listed as teaching in LEA-provided data, and (b) a list of students in each class. Teachers and principals were asked to check these rosters for accuracy and make any changes they found necessary to correct inaccuracies.

A total of 286 classes were listed on the rosters of the 52 participating teachers over the two (or three) time points when teachers were given roster data. Teachers made relatively few changes to these class lists, but the changes that were made would affect the kinds of data provided to VAM vendors. For example, 2% of classes initially presented to teachers were recorded as being taught by another teacher; about 8% of classes were changed from one course code to another; and about 5% were changed to reflect team teaching arrangements. The most frequently occurring error in initial rosters was the grade level recorded for the class. In the roster pilot, more than 1 in 5 (or 22%) of classes were changed to reflect different grade levels. Once corrections were made to class lists, teachers examined the initial student rosters for each class. A total of 8583 students were listed as enrolled in the classes listed. Of these, only 2% (or 173) students were marked as not being in the class for which they were listed, and an additional 318 students who were not on that list in its original form were added to the course lists.

An interesting question is how long the roster verification process took teachers and principals to complete. To obtain an estimate of this, ISR researchers administered surveys to the teachers and principals who participated in the pilot. The survey data showed that the median teacher spent about 15-30 minutes on the rostering process each semester or trimester, with principals reporting about the same
time expenditure. Overall, teachers and principals generally found the web interface easy to use, reporting that the most difficult and time consuming task was adding students to rosters, and that the most difficult part of the rostering task to perform accurately was recording the dates at which students entered or left their classes. Finally, the majority of teachers and principals reported that they would be willing to engage in this rostering process as part of the teacher evaluation process. In summary:

- **The roster pilot showed that a roster verification process was possible in Michigan schools, that this process would uncover errors in the reporting of both teacher course assignments and student course enrollments, and that the verification process could be completed by most teachers and principals in 15-30 minutes per semester.**

Results of VAM Analyses

To this point, the chapter has described the various VAM analyses that can be conducted with MEAP data and the data processing issues involved in conducting such analyses. This section reports on some of the results of the VAM analyses.

The first results to note are these:

- **When variance in adjusted achievement scores was decomposed into three components (students, classrooms, schools), the variance components in MEAP data differed from what is typically seen in large-sample student achievement data.**

- **In addition, the teacher effects on adjusted student achievement estimated from value-added models using MEAP data tended to be at the lower end of what has been reported in other studies.**

Elsewhere, for example, analysts using covariate adjustment models like the ones estimated in the pilot have reported that the percentage of variance in adjusted achievement lying among classrooms varies from around 4-18% of the total variance in adjusted achievement. These results can be compared to results from MEAP data by looking at the graphs presented on the next page. The data shown there come from a variance decomposition conducted by AIR in which variance in students’ “adjusted” achievement was partitioned among students, teachers within schools, and schools. Because these data come from AIR’s Model A, students’ current achievement has been predicted from several years of students’ prior achievement. The data show relatively small classroom-to-classroom variance in this adjusted achievement in Michigan schools. Indeed, in the MEAP data at hand, the variance in adjusted achievement among schools was always higher than the variance in adjusted achievement among classrooms within schools.

The largest classroom-to-classroom variance was in the 4th grade mathematics data, where about 63% of the variance in adjusted achievement was among students in classrooms, 11% was among classrooms within schools, and 26% was among schools. These data imply that two teachers who teach students with similar achievement histories but differ by a standard deviation in the distribution of teacher effects will produce a difference of about 3 MEAP scale score points in the average mathematics achievement score of their students. This translates to a δ type effect size of about .30 for adjusted MEAP scores and about .13 for unadjusted MEAP scores. These “effect sizes” are not unusual in VAM covariate adjustment analyses, except that in most analyses, there is more variance in adjusted achievement among classrooms than among schools.

In other grades, for both mathematics and reading, the data on the next page show that teacher effects were not as large as in 4th grade mathematics. Much more typical were the teacher effects in 6th grade mathematics, where variance among classrooms in adjusted achievement was 4% of total variance, two teachers a

11 This feature of the roster interface was added to assure that the roster interface would produce accurate data on the amount of time a teacher served as the instructor for any student.

12 See, for example, Brian Rowan, Richard Correnti, and Robert Miller, “What Large-Scale Survey Research Tells Us About Teacher

Effects on Student Achievement: Insights from the Prospects Study,” *Teachers College Record, 104*(8), 2012.

13 We can compare this estimate to the SAS MRM estimate of teacher effects. The SAS MRM model, the reader will recall, is a layered model estimating teacher effects on students’ gains in achievement (as measured by changes in Normal Curve Equivalent [NCE] scores above or below what would be predicted by prior achievement). Here, two 4th grade math teachers who differ by a standard deviation in the distribution of teacher effects (but who otherwise teach students with similar levels of prior achievement) are estimated to produce an average difference in student math gains of 3.88 NCEs.
At a Glance: Percentage of Variance in Adjusted Achievement in MEAP Mathematics and Reading Lying Among Students, Teachers, and Schools

MEAP Mathematics Scores

![MEAP Mathematics Scores Graph]

MEAP Reading Scores

![MEAP Reading Scores Graph]

AIR Model A is a cross-classified hierarchical model with students, linked to multiple teachers, nested within schools. At level one, the model predicts a student's current achievement test score from several prior achievement test scores. Other levels of the model include random effects for teachers and schools.
standard deviation apart in the distribution of teacher effects would produce a difference of about 2.4 MEAP scale points in mathematics achievement over the Fall-to-Fall period, and the δ type effect size would equal .21 for adjusted scores and .09 for unadjusted scores. The teacher effects were similarly small in reading. For 4th grade reading, as an example, the percentage of variance in students’ adjusted MEAP scores among classrooms was just 3%, two teachers a standard deviation apart in the distribution of teacher effects would produce a difference of a little less than 3 MEAP scale scores points in achievement over a Fall-to-Fall period, translating to a δ type effect size = .17 for adjusted MEAP reading scores and .10 for unadjusted MEAP reading scores.¹⁴

The relative size of variance components in these analyses, coupled with the number of students linked to a teacher for a VAM analysis, affects the reliability of estimated teacher effects on student achievement. The graphs to the right show how this works for the MEAP data at hand. The graphs show that as the number of students linked to a teacher increases for a specific VAM analysis, the reliability of teachers’ value-added scores increases.¹⁵ The graphs also show that the absolute levels of reliability achieved by adding students depends also on the amount of variance in adjusted achievement that lies among teachers. Note, for example, that the reliability of teacher effect estimates for mathematics are always higher at grade 4 (where variance among teachers is largest) compared to reliability at other grades (where the teacher variance is smaller). Note also that teacher effect reliabilities are much higher for analyses in the area of mathematics versus reading. Again, this is due to the fact that there is more variance in adjusted mathematics achievement among teachers than there is variance in achievement among teachers in the area of reading.

¹⁴ For SAS, which is estimating teacher effects on students’ gains in achievement (as measured by changes in Normal Curve Equivalent [NCE] scores above or below what would be predicted by prior achievement) the difference in NCE gains for teachers a standard deviation apart in the distribution of teacher effects is 3.1 NCE’s; for 4th grade reading, the difference is 1.9 NCE’s.

¹⁵ The graphs are based on variance in student, teacher, and school variance components where “adjusted” student achievement is the dependent variable. Variance component estimates provided by AIR. The reliability coefficient presented here is discussed in Stephen W. Raudenbush and Anthony S. Bryk, Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd Edition, Sage (2002: 230).
Overall, the average number of students with whom a teacher is linked in MEAP data is around 17. This suggests that the reliability of teacher effect estimates in the VAM analyses presented here are between .76-.86 for analyses in mathematics and .30-.51 for analyses in mathematics.

Although these reliabilities appear reasonable (especially for mathematics), it should be noted that a lack of “relative” precision in VAM estimates can make it difficult to ascertain whether teachers’ VAM scores differ from one another or from some established cut point that serves as a performance standard for evaluative purposes (a point discussed in more detail in Chapter 5 of this report). This problem occurs because the standard errors of VAM estimates are fairly large relative to the standard deviation in these estimates. An analysis presented by AIR of this issue suggests this problem is prevalent in all VAM estimates based on MEAP data, but is more exacerbated in estimates of reading teachers’ value-added scores compared to estimates of mathematics teachers’ value-added scores.

A last set of findings from the VAM analyses concern the correlations among different VAM estimates of teachers’ effects on students’ achievement. This is an important issue for two reasons. First, this chapter has already noted that VAM vendors are prepared to estimate a variety of statistical models for clients, models that are based on different approaches and methodologies (e.g., growth versus covariate adjustment models). Moreover, a major controversy in the literature concerns whether or not to control for prior achievement only in these models, or to control for prior achievement plus other student characteristics, or to control for prior achievement, plus other student characteristics, plus “peer” effects.

The table to the immediate right shows the correlations among different value-added models. To produce the table, ISR researchers simply examined bivariate correlations of teachers’ value-added scores to each other when estimated by the same vendor using different statistical models, and the bivariate correlations across different vendors. We only were able to do this for two vendors (SAS and AIR), but preliminary analyses with data from the third vendor (EA) suggest that results will not be different once the results of this vendor’s analyses have been added to the table.

Once again, the table presents data for 5th grade mathematics, and again it is worth noting that the results shown in the table generalize to other grades. The main finding of note is that:

- The value-added estimates for a given teacher are highly correlated both within vendors as they control for more covariates and across vendors that use different statistical models to estimate teacher value-added scores.

In fact, looking at the top of the table, one can see that within vendors, value-added scores for a teacher are

At a Glance: Correlations of VAM Scores Within Vendors by Type of Model (for 5th Grade Math)

<table>
<thead>
<tr>
<th></th>
<th>SAS 1</th>
<th>SAS 2</th>
<th>SAS 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS 1</td>
<td></td>
<td>.94</td>
<td>.95</td>
</tr>
<tr>
<td>SAS 2</td>
<td></td>
<td></td>
<td>.99</td>
</tr>
<tr>
<td>SAS 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AIR 1</th>
<th>AIR 2</th>
<th>AIR 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR 1</td>
<td></td>
<td>.99</td>
<td>.97</td>
</tr>
<tr>
<td>AIR 2</td>
<td></td>
<td></td>
<td>.98</td>
</tr>
<tr>
<td>AIR 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAS = layered model AIR = covariate adjustment model, random teacher and school effects 1 = Controls only for students’ prior achievement 2 = Controls for prior achievement + student characteristics 3 = Controls for prior achievement, student characteristics and peer effects

At a Glance: Correlations of VAM Scores Across Vendor Models (for 5th Grade Math)

<table>
<thead>
<tr>
<th></th>
<th>AIR 1</th>
<th>AIR 2</th>
<th>AIR 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS 1</td>
<td>.92</td>
<td>.91</td>
<td>.91</td>
</tr>
<tr>
<td>SAS 2</td>
<td>.88</td>
<td>.90</td>
<td>.92</td>
</tr>
<tr>
<td>SAS 3</td>
<td>.89</td>
<td>.90</td>
<td>.95</td>
</tr>
</tbody>
</table>

SAS = layered model AIR = covariate adjustment model, random teacher and school effects 1 = Controls only for students’ prior achievement 2 = Controls for prior achievement + student characteristics 3 = Controls for prior achievement, student characteristics and peer effects
highly correlated (greater than .94) as one moves from models that control only for prior achievement, to models that control for prior achievement plus other student characteristics, to models that control for these factors plus peer effects. Looking at the bottom of the table, one also can see that even though AIR and SAS use different statistical models to estimate teacher VAM scores, these estimates are almost always highly correlated (between .88 and .95).

It is important to note, however, that even when different VAM scores are as highly correlated across models as they are in the table on the previous page, some teachers’ VAM scores will change from statistical model to statistical model. Moreover, even slight changes in a teacher’s VAM estimate can affect a teacher’s annual evaluation, especially when cut points for assigning ratings are established near the center of the VAM score distribution. In evaluation systems that make these fine-grained, categorical distinctions among teachers, teachers with scores near the established cut points will be especially vulnerable to ratings changes that result from small changes in VAM scores produced by different statistical models.

Thus, although different statistical models produce highly correlated value-added estimates, value-added estimates do change across models in ways that can have important effects on teachers’ annual evaluation ratings. For this reason, ISR recommends that if any education authority in Michigan plans to implement value-added modeling as part of its teacher evaluation process:

- **A panel of educational and statistical experts should be convened to evaluate the technical quality of different approaches to value-added modeling. This panel can make recommendations about the value-added model(s) to be used to evaluate educators and about the vendor who will implement that approach in practice.**

16 In an analysis conducted by EA, for example, about 20-40% of teachers’ VAM scores changed by .20-.50 sd’s (depending on subject and grade) as this vendor changed from models that include student covariates to models that included student covariates plus peer effects.
Chapter 5: Setting Standards for Teacher Evaluation

This chapter addresses an issue discussed in Chapter 2 of this report. That chapter showed that there was no uniform standard for classifying teachers into the effectiveness ratings mandated by section 2(e) of PA 102 of 2011 and that, as a result, the percentage of teachers classified as “effective” and “highly effective” after annual evaluations varied widely from district to district, not because talent levels differed across districts, but because districts used different weighted formulae and set different cut points for assigning teachers to final effectiveness ratings.

In light of these findings, this chapter addresses two questions:

- How can districts go about setting performance standards for assigning effectiveness ratings to teachers?
- What percentage of teachers might end up being classified into different effectiveness ratings if a standards-based rating system is implemented?

The point of departure for addressing these questions is a discussion of two dimensions of the performance rating process: (a) measuring the “levels” of teacher performance; and (b) understanding the degree of statistical (un)certainty present in these measures. To illustrate how these two dimensions of performance rating inform the assignment of effectiveness ratings to teachers, this chapter first uses observation and VAM data to describe the levels of measured performance among Michigan teachers and then describes the degree of statistical (un)certainty associated with these measures. The chapter then describes two “standards-based” approaches to assigning teachers to effectiveness ratings. Both approaches take teachers’ levels of performance into account in assigning effectiveness ratings. However, an initial method also takes into account the amount of statistical uncertainty surrounding a teacher’s measured performance when assigning an effectiveness rating while a second approach does not. The chapter shows that the statistical uncertainty of teacher performance measures used in the pilot was high, and that because uncertainty was high, it was very difficult to assign teachers unambiguously into fine-grained ratings categories.

Two Approaches to Performance Rating

Observation vendors in the pilot used “absolute” standards to judge teaching performance. In particular, each vendor’s classroom observation tool had a set of items on which performance was to be rated, each tool had a rating scale that defined performance levels on these items, and each tool had an established scoring rubric to describe the behaviors and activities that justified assigning a performance level on an item to a teacher. FFT, for example, rated teachers on ten items (grouped into two domains called “the classroom environment” and “instruction”). In conducting a classroom observation, an observer assigned a rating on each item to teachers. In FFT (and also 5D) ratings were assigned at four performance levels: (1) unsatisfactory; (2) basic; (3) proficient; and (4) distinguished. TC had a similar rating system for assigning scores to items measuring its “four corners” of teaching effectiveness. It defined performance levels as: (1) novice; (2) developing; (3) proficient; and (4) expert. In rating classroom performance, then, observation vendors tended to rate the performance level of a teacher on an item.

VAM vendors took a different approach to performance standards. They assigned performance ratings to teachers based on two factors. The first was a teacher’s measured impact on students’ learning (i.e., a VAM score). The second was the degree of statistical (un)certainty associated with that estimate. When VAM vendors developed rating systems for teacher evaluations, they tended to ask the question: is a teacher’s estimated VAM score significantly different from the statewide mean for teachers of similar students? To answer this question they used statistical procedures to create 95% (and 68%) confidence intervals around each teacher’s estimated VAM score then looked at whether those confidence intervals included the statewide mean. If the confidence intervals overlapped with the statewide mean, teachers were gen-
eraly labeled in VAM reports as having a VAM score that was “no different from average.” However, when the confidence intervals did not overlap with mean, teachers were labeled as “significantly below average” or “significantly above average” depending on the absolute level of their score.

These examples show that: Performance ratings have two components. One component is an estimate of a teacher’s level of performance (as measured by some measurement tool). The second is the degree of confidence one has in that estimate—as reflected in the confidence interval statisticians calculate for that estimate.

Estimated Levels of Performance

An interesting descriptive question is what the “levels” of teaching performance were in the pilot study. For example, what did the observation data collected during the pilot tell us about how good the teaching was in pilot schools (at least as captured in the classroom observation tools)? And what did the VAM analyses tell us about how much student growth in achievement was produced by Michigan teachers (at least as captured by complex VAM estimates)?

One way to address these questions is to look at the distribution of teaching performance in pilot schools as measured by the classroom observation tools used in the pilot. In looking at these distributions, we are particularly interested in knowing the percentage of teachers who were rated as unsatisfactory, basic, proficient, and expert. These distributions are shown in the graphs to the right. Recall that each observation tool scored items on a scale of 1 to 4, where 1 was labeled as unsatisfactory by 5D and FFT and as novice by TC, where 2 was labeled as basic by 5D and FFT and as developing by TC, where 3 was labeled as proficient by 5D, FFT and TC, and where 4 was labeled as distinguished by 5D and FFT and as expert by TC. The scores assigned to teachers in the graphs to the right are simply average scores (across all items and occasions) for a teacher. No data are presented for the Marzano protocol because of extensive missing item data.

Looking at the graphs to the right shows that: The average score of most teachers on the observation tools tended to range from proficient (average score = 3) to distinguished (average score = 4), although this was not the case for scores on the 5D tool, where proportionally more scores were in a range from 2 to 3.5 (i.e., from basic to proficient). It is difficult to know if the difference between 5D scores and scores on the other tools is an effect of varying degrees of lenience (or severity) among districts using different tools, or if the 5D tool was perhaps measuring different dimensions of teaching than the other observation tools, or if the teachers in 5D districts were simply less proficient in teaching. ISR researchers are inclined to guess that the difference between 5D scores and the other score distributions reflects differences in the
The emphasis of the 5D protocol, which is heavily weighted to assessing cognitively demanding instruction.

The average scores of teachers (shown on graphs on the previous page) obscure information about how teachers perform along specific dimensions of instructional practice. The graphs immediately to the right (on this page) show information at this level of detail. These graphs break teachers into three groups: teachers whose IRT scale scores on a tool were well-below the mean (i.e., teachers in the bottom quartile of the score distribution); teachers whose IRT scale scores were in the middle of the distribution (i.e., in the middle two quartiles), and teachers whose IRT scale scores were well-above the mean (i.e., in the top quartile of IRT scale scores).

What these graphs show is that: Teachers in the bottom quartile of measured performance—no matter what tool is being used—have item scores that are usually below “proficient” on the associated rating scales. One can also see that as we move up the performance distribution, item scores generally move up as well, so that teachers in the middle quartiles generally have scores that are centered a little above a proficient rating, and those in the top quartile of the performance distribution generally have scores approaching distinguished (or expert).

Importantly, the data to the right show another trend that is present within all performance groups: Teachers generally score higher on items that measure dimensions of the classroom environment (like “classroom organization” and “positive relationships with students”) and score lower on items measuring important dimensions of instructional practice such as “developing a culture of thinking and learning” or “use of assessment techniques” or “questioning and discussion techniques.” For example, the graph for item scores on the FFT tool is shown in the right middle. This graph shows item scores on the five best-fitting items on the FFT scale, but it still illustrates that, in all quartiles of the performance distribution, there is a fall-off in average item scores as one moves from the item measuring a classroom environment of respect and rapport to the item measuring a teacher’s use of questioning and discussion techniques. A similar pattern can be found for the graph of TC items, where only “four corners” items are shown. On that
At a Glance: Relative Impact of Teachers on Grade 5 Math Gains

These are histograms of the distribution of estimated teacher effects on students’ gains in 5th grade mathematics and reading (from the SAS VAM analysis using the MRM model 1). The average teacher impact is centered at zero. One can see from these graphs that students of a teacher one standard deviation above the mean in the performance distribution for 5th grade mathematics teachers will end the year about 4 NCE’s above students in the average teacher’s class. Students of a teacher one standard deviation above the mean in the performance distribution for 5th grade reading teachers will end the year about 3 NCE’s above students in the average teacher’s class.
“above average” gains (a student has made larger gains than the norming population), and a negative score indicates “below average” gains (a student has made smaller gains than the norming population).

The graphs on the previous page show the performance distribution for 5th grade teachers of mathematics and reading. Notice that 68% of VAM scores are between about -4 and +4 in the math distribution and between -2.7 and +2.7 in the reading distribution. To understand what this means for student learning, it is useful to imagine an experiment in which two similar students begin a school year at the 50th percentile of the MEAP distribution. Now, assume that one of these students is assigned to the average teacher in Michigan’s VAM score distribution while the other is assigned to a teacher who is one standard deviation above the mean in that distribution. Then:

- **Over a Fall-to-Fall period, an average student in an average-performing 5th grade mathematics teacher’s class will start and end the period at the 50th percentile (for an NCE gain of 0) while an average student in a superior-performing teacher’s class will begin the time period at the 50th percentile and end the time period at about the 57th percentile (for an NCE gain of about 4).**

Differences in reading achievement will be somewhat smaller. The student in the average teacher’s class again ends the time period at the 50th percentile (for an NCE gain of 0), whereas the student in the superior teacher’s class ends the time period at about the 55th percentile.

Again, this information is useful for setting performance standards in teacher evaluation. We already know that the average teacher in Michigan has a VAM score of 0 (indicating that his or her students are experiencing academic growth on test scores at the same pace as the average student in Michigan). So one question central to setting performance standards for VAM scores would be: How far behind do a teacher’s students need to fall before we decide that the teacher is, for example, ineffective? If a teacher’s VAM score is -4 in mathematics, the average student would drop from the 50th percentile on the MEAP mathematics test to the 42nd percentile over a Fall-to-Fall period; if a teacher’s VAM score is -6, the average student would drop from the 50th percentile to about the 39th percentile; if a teacher’s VAM score was -8, the average student would drop from the 50th percentile to about the 36th percentile. Evaluators need to decide which of these performance levels should be used to signal “ineffective” teaching.\(^{19}\)

Imprecision in Teacher Performance Estimates

Looking at a teacher’s score from an observation instrument or VAM analysis is an important part of the evaluation process. But an important concept from measurement theory is this: Any measure of a teacher’s performance, whether from a classroom observation or a VAM model, is an estimate of that teacher’s performance, and estimates come with uncertainty. This uncertainty arises from errors of measurement, of which there are many in the measurement of teaching performance. For example, we have already seen in previous chapters that errors in measurement from classroom observations arise because teacher’s estimated performance can vary from occasion to occasion, from observer to observer, and from item to item. With VAM scores, the primary source of error variance is the number of students whose achievement is being considered in the VAM estimate.\(^{20}\)

The usual way uncertainty in measurement is quantified by measurement experts is through the standard error of measurement (SEM). One way to understand the SEM is to see it as an estimate of how much repeated measures of a person on the same instrument will be distributed around that person’s “true” score. In general, SEM’s are larger when reliability is lower, simply because measurement errors (not changes in true performance) are producing score variance. As it turns out, the SEM is related not only to measurement reliability, but also to the “confidence intervals” that statisticians set around estimates. A confidence interval can be thought of informally as an estimated

\(^{17}\) We can look at the reverse case, where one student gets the average teacher and another gets a teacher a standard deviation below the mean of the teacher performance distribution. Then the student of the average teacher ends the year at the 50th percentile while the student assigned to the low performing teacher falls to about the 42nd percentile.

\(^{18}\) Researchers often look at more extreme differences in the teacher performance distribution. For example, if one of our 50th percentile students was assigned to a teacher two standard deviations above the mean of the teacher performance distribution, that student would end the year at the 64th percentile.

\(^{19}\) The same problem arises in deciding who to classify as “highly effective.” How far (above average gains) must a teacher’s students be boosted to see if he or she is to be classified as highly effective?

\(^{20}\) The precision of VAMs can also be affected by measurement errors in the independent variables—especially prior test scores.
range of values which is likely to include the unknown “true” score of a person (given a sample of data). A 95% confidence interval is bounded by 1.96 SEMs on both sides of the estimate, and a 68% confidence interval is bounded by 1 SEM on both sides of the estimate.

The SEM and confidence intervals for performance measures are important to the evaluation of teachers for several reasons. Suppose, for example, that an education authority wants to know how confident it can be that a teacher has met a standard of classroom teaching performance required for tenure. For example, suppose the education authority has said a teacher must be “proficient” in teaching (i.e., have a score of 3 on the FFT framework) in order to obtain tenure. Now suppose that a teacher has been scored at 2.5 on a series of classroom observations (i.e., the teacher’s score is “basic” on the scoring rubric, but not yet “proficient”). The question an education authority might want to address is how confident it can be that this teacher is truly not proficient (i.e., does not have a score of 3). One way to address this question is to put a 95% confidence interval around the estimate of 2.5 and see if it includes a score of 3 (the standard required for tenure). Of course, there is nothing sacred about a 95% confidence interval. An education authority might, for example, only want to be 68% confident in its decision, in which case it would use a 68% confidence interval.

The use of such confidence intervals in performance measurement is quite common. Confidence intervals are widely used in student assessments to determine whether students have (or have not) reached particular performance levels (such as proficient). VAM vendors also use confidence intervals when they classify teachers into performance categories. In particular, VAM vendors often use 95% (and 68%) confidence intervals on a teacher’s VAM score to see if a teacher’s estimated VAM score overlaps with the sample mean. When a teacher’s estimated VAM score is below the mean and the 95% confidence interval for the estimate does not include the mean, VAM vendors say that teacher is “significantly below average” in performance. Or, if the teacher’s estimated VAM score is above the mean and a 95% confidence interval does not overlap with the mean, they might call that teacher “significantly above average.”

Note, however, that VAM vendors are using the mean of the score distribution as the reference standard, and this brings our discussion back to the critical problem of how to choose a particular “level” of performance as the reference standard for personnel classification. An education authority, for example, might want to screen out teachers whose VAM scores are 1.5 standard deviations below the mean (which would mean the average student in these teachers’ classes would experience decrements of about 6 NCE’s over a year compared to similar peers). It is only after a standard has been set that confidence intervals come in handy. Confidence intervals tell evaluators the “chances” that an employee’s measured performance overlaps with, or is above or below, a particular standard of performance that has been set in advance.

An important point about VAM and teacher observation scores is that they have very large standard errors of measurement relative to the distribution of estimated performance scores. The graphs at the top left of the next page, for example, show the 95% confidence intervals for scores on one of the observation tools that MCEE piloted (FFT) and for one grade/subject combination of VAM score estimates (4th grade math using SAS MRM estimates). The X (or bottom) axis of each graph shows the range of (observation or VAM) scores. The Y (or vertical axis) shows the cumulative number of teachers. The black dots on the graph are scores for individual teachers. The red lines running through each black dot are the 95% confidence intervals for each score. Note that the 95% confidence interval is different for each score. For observation data, that occurs because different teachers have been observed on different numbers of occasions, with more or less observer error, and during that time, perhaps scored on more or fewer items. For VAM data, that is because teachers have been linked to different numbers of students using TSDL data, and teachers whose VAM scores are estimated from fewer students will have larger confidence intervals.

21 The same problem can be framed as one of deciding about giving rewards to teachers. For example, suppose an education authority sets a standard of 3.5 on FFT for award of “master teacher” status. Then the problem is once again to place a confidence interval around a candidate’s estimated score to see if it is “significantly” above the required standard.
At a Glance: 95% Confidence Intervals for IRT Scale Scores on the FFT Observation Tool

Now, look at the top graph to the left. This graph shows the estimated observation scores of teachers who were observed with FFT (in IRT scale score points) and the 95% confidence intervals for these estimates. *What can be seen from the graph is that the 95% confidence intervals for teacher observation scores are large relative to the distribution of IRT scale scores.* As an example, notice that the 95% confidence interval for a teacher whose FFT score is 2 on the graph runs from about +3 to about 0. This makes it very difficult to confidently distinguish teachers’ observation scores from one another and (as we are about to see) very difficult to confidently ascertain whether a given teacher falls above or below some cutoff for meeting a particular standard of performance.

Next, look at the graph at the bottom left of this page. This graph shows the estimated VAM scores for 4th grade mathematics teachers (using the SAS MRM model) as well as the 95% confidence intervals for these estimates. Bearing in mind that with SAS VAM scores, the mean of the performance distribution is 0, and that the scale indicates the relative boost or decrement to NCE scores that the average student in a class would experience over a Fall-to-Fall period, we can look at how precisely any teacher’s VAM score is estimated. *What can be seen from the graph at the bottom left is that the 95% confidence intervals for teacher VAM scores are large relative to the distribution of scores.* As an example, the 95% confidence interval for a teacher with a VAM score of +5 runs from about +10 to -5. Again, this makes it difficult to confidently distinguish teachers’ VAM scores from one another and (as we shall see later) to confidently ascertain whether a given teacher falls above or below some cutoff for meeting a particular standard of performance.

Taking Imprecision into Account in Making “High Stakes” Personnel Decisions

To this point, the chapter has demonstrated two elements of a standards setting process for teacher evaluation. As a first step, we looked at performance distributions and deliberated about the absolute score levels that would determine assignment of a rating category (like “ineffective”) to a teacher. We have also looked at how certain decision makers can be about a teacher’s measured level of performance (by examining standard errors of measurement [SEMs]). These SEMs, it will be recalled, were quite large relative to the distribution of scores.
The lack of relative precision of teacher performance measures has important implications for the classification of teachers into the four effectiveness groups defined by section 2(e) of PA 102 of 2011. It should go without saying that the task of assigning teachers into ratings categories comes with real stakes for teachers—especially if a teacher is to be assigned to the “ineffective” category. By law in Michigan, if a teacher is classified as ineffective three years in a row, that teacher must be dismissed. Education authorities should therefore exercise care in making this classification. The law also requires that public education agencies classify teachers into three additional categories (minimally effective, effective, and highly effective). But:

- The challenge in classification of teachers into final effectiveness ratings is that confidence intervals around observation and VAM score estimates are large relative to the performance distribution. This makes it difficult to make classification decisions with a high degree of statistical confidence.

To see this, we now explore an approach to assigning teachers to ratings categories using confidence intervals to assess the degree of confidence that decision makers can have about whether a given teacher’s job performance does or does not meet some consequential performance standard.

In the example, we assume that an education authority is deciding whether a teacher exceeds the performance level needed to be classified as “ineffective.” As we have seen, to make this decision, the education authority needs to set some absolute standard required for this decision. In the following examples, we arbitrarily assume that the education authority has set a score of 2 (or “basic”) on the FFT scale as the cut point that must be exceeded to avoid classification as an ineffective teacher (which translates to a score of about 1.5 standard deviations below the sample mean). In addition, we shall assume (again arbitrarily) that the education authority has said that any teacher must have a VAM score above -6 to exceed the threshold for being classified as ineffective on the basis of VAM scores (this again translates to a score that is about -1.5 sd’s below the mean of the VAM score distribution). In the scenario, then, the education authority under discussion has already set its performance standards in advance.

Now, let us suppose that in making decisions, the education authority wants to be confident in its decisions about teachers. In particular, suppose it wants to be fairly certain that when it declares a teacher whose score is below the relevant cut point for being classified as “ineffective” that there is a strong chance this classification reflects a teacher’s true score—not measurement error. To gain perspective on this issue, the education authority can set a confidence interval around the teacher’s estimated score and examine whether that confidence interval overlaps with the standard being used to make the decision. If the confidence interval overlaps with that standard, the education authority cannot be confident that the teacher’s true score is really below the cut point, but if the confidence interval does not overlap with the cut point, it will have more confidence in its decision.

The figures on the next page show how this kind of decision making works for FFT scores (top graph) and VAM scores (bottom graph). These are the same graphs shown previously, except now we have drawn a vertical line running through the left hand side of the X (or bottom) axis of the graph to show the cut point (or standard) above which teachers must score to avoid being classified as “ineffective.” All scores to the left of this line are below the established cut point for being classified as “ineffective” on the basis of an FFT or VAM score, and all scores to the right of that line meet or exceed the standard.22

Now, look once again at the red lines running through the scores in the region of the cut point on the graphs. These are the 95% confidence intervals of estimated FFT and VAM scores. What is immediately evident from the graphs is that not all teachers with FFT or VAM scores below their respective cut points can be said with 95% confidence to be “ineffective” since many 95% confidence intervals for scores to the left of the applicable cut point run through that cut point. In fact, using 95% confidence intervals, only teachers at the very extremes of the distributions (with scores below -2.5 on FFT and scores below -10 on the VAM measure) can be labeled as “ineffective” with 95% confidence.23 Moreover, we also can see from the graphs that many scores above the cutoff

22 The line on the right hand side of the graph is a cut point for determining whether a teacher can be classified as highly effective.

23 We can take a more optimistic scenario and suppose the education authority wants to identify “highly effective” teachers. The situation here is the same. Only a handful of teachers whose FFT
scores are above ±1.5 sd’s can be said to be above the established standard with 95% confidence. Thus, decision errors can be made on both sides of the cut point.

The Problem of Joint Classification

To this point, we have discussed classification problems using a single performance measure at a time. But, PA 102 of 2011 calls for the use of multiple performance measures to classify teachers into section 2(e) ratings categories. For that reason, this section turns to the problem of joint classification, that is, classification that involves the use of more than one performance measure to make personnel decisions.

There are a variety of ways to make classifications using more than one performance measure. Perhaps the most common approach is to form a linear composite of the two indicators. This is in fact what most districts in the MCEE pilot did, and it is the method implicit in PA 102 of 2011, which calls for more weighting to be given to student learning measures in assigning effectiveness ratings to teachers. 24 We do not discuss this approach now (although we will discuss it in a technical report). Rather, this chapter focuses on a method of joint classification that is consistent with MCEE’s recommended approach to assigning effectiveness ratings to teachers (see page 23 of *Building an Improvement-Focused System of Educator Evaluation in Michigan: Final Recommendations, July 2013*). 25 Unlike the MCEE approach, however, the approach to joint classification illustrated in this report takes both estimated scores and confidence intervals into account in making classification decisions.

MCEE’s final report called for education authorities to use two primary measures to assign final effective-
ness ratings to teachers: (1) teacher observation scores; and (2) student growth scores. The table immediately to right shows how MCEE’s approach might work (although it is not exactly the same as the table shown in MCEE’s final report). In the table to the right, ISR researchers are assuming that Michigan has transitioned into a fully developed system of teacher evaluation in which two kinds of data are readily available to decision makers. The first is a score from a state-approved classroom observation tool. In the empirical illustrations presented below, ISR researchers will assume that each teacher has been observed on about 4 occasions per year and that decision makers have an IRT scale score for each teacher on this instrument, along with a standard error for that score. The second score comes from a fully-developed system that provides VAM scores. In the empirical illustrations to follow, ISR researchers assume that decision makers are using VAM scores generated from the SAS MRM model for teachers of 4th-grade mathematics, along with the SEMs for each score.

To construct the table to the right, ISR researchers assigned teachers to cells in the 9-fold table taking 95% confidence intervals into account. In this approach, they first assigned ratings by grouping teacher separately on observation and VAM scores into those that were above or below the respective cut scores for being classified as “ineffective” or “highly effective” on each measure (making sure that a teacher was classified as ineffective or effective only if the 95% confidence region for scores of teachers did not overlap with the relevant cut score).26 After doing this, ISR researchers produced three groups of teachers on each ratings category—a group of ineffective teachers on a rating dimension (like FFT), a group of highly effective teachers on that rating dimension, and a remaining group of teachers who could not be classified into either of these ratings and received a rating of “standard.” ISR researchers then cross-tabulated these separate ratings to produce the 9-fold table shown above.27

An important practical question concerns the number of teachers who can be expected to fall into the various cells of this 9-fold table (given what we know about the distribution of performance scores from the pilot research). Put differently, under the decision rules just described, how many teachers will be classified as “ineffective,” how many will be classified as “highly effective,” and how many will fall into the “standard” category? The answer to these questions has real cost implications. For example, classifying teachers as ineffective increases supervision costs (as a matter of law and good employment policy), and when such classifications lead to dismissal, districts face the costs associated with recruiting new teachers and training them. Classifying teachers as highly effective also affects supervision costs, since under PA 102 of 2011 several aspects of the annual evaluation process (e.g., annual classroom observations) are eased for highly effective teachers (thus reducing principals’ evaluation workloads). A large group of teachers in the “standard” classification means more teacher observations, more teacher conferences, and more reporting for principals, since teachers in this group must be evaluated annually.

ISR researchers conducted a simulation study to estimate how many teachers would end up in the various cells of the table above, and to see how those numbers would change as more years of data were used on each teacher. The goal of using multiple years of data

26 Note the shift in language from confidence interval to confidence region. A confidence region is simply a multivariate extension of the confidence interval.

27 It is worth noting that other approaches to classification could be taken. For example, we could generate the four category rating system described in section 2(e) of PA 102 if we: (1) label any teacher who was ineffective on both scores as “ineffective”; (2) label any teacher who was ineffective on any one score dimension as “minimally effective”; (3) label any teacher who was neither ineffective or effective on either criteria as “effective”; and (4) label any teacher who was effective on both scores as “highly effective.” This would produce the four ratings categories listed in section 2(e) of PA 102 and still be based on rigorous statistical procedures.
was to increase measurement precision. In constructing this simulation, ISR researchers used data on the distributions and standard errors of VAM and FFT scores from pilot data and then assumed a correlation of \(r = .40 \) among the two performance measures to create a simulated data set of 905 teachers like those who would be found in Michigan.\(^\text{29}\) The simulation was then used to forecast the percentage of teachers who would be assigned a particular effectiveness rating using one, two, and three years of data.

A table at the top of the next page presents the results of this simulation. Here, teachers whose VAM and FFT scores fell below the cutoff (of \(-1.5 \) sd’s) on both measures with 95% confidence were labeled as ineffective and placed in the red-shaded cell of the table. In addition, teachers whose VAM and observation scores were above the cutoff (of \(+1/5 \) sd’s) on both measures with 95% confidence were labeled as highly effective and placed in the green cell of the table. The remainder of teachers were placed in the buff-colored cells and labeled as “standard.”

The simulated data (on the next page) suggest that using 3 years of data—with the average teacher having about 12 FFT observations and a VAM based on 51 students—\(.5\% \) of teachers will be classified as ineffective using the 95% confidence region ISR set for decision making and no teachers will be classified as highly effective using a 95% confidence region. The reason for these very low percentages at these extremes of the joint distribution is the imprecision of both the classroom observation measures and VAM measures relative to their respective distributions.

There are several ways to change the percentages of teachers in the cells of the table just discussed. For example, keeping a 95% confidence region:

- Alternatively, an education authority could set a lower threshold for being classified as “ineffective” or “highly effective.” For example, the standard could be set at \(-1.0 \) sd’s for being classified as ineffective on an observation score or a VAM score, and \(+1.0 \) sd’s to be classified as “highly effective.” Using this decision rule, ISR’s simulation found that 2% of teachers could be classified as ineffective and 1% of teachers as highly effective with three years of data.

- Alternatively, an education authority could use the cut point often used in VAM analyses and use the mean of the distribution as a standard for classifying teachers as “ineffective” or “highly effective.”\(^\text{29}\) Using this approach, any teacher whose VAM and FFT scores and 95% confidence region for those scores was below the mean would be classified as ineffective, and any teacher whose VAM and observation scores were significantly above the mean would be classified as highly effective. Using these decision rules, about 23% of teachers would be classified as ineffective and about 28% of teachers as highly effective, leaving about 44% of teachers in the “standard” classification. This approach, however, is clearly unsustainable, for few districts could afford the replacement and supervision costs of this approach.

- Finally, an education authority could change the confidence region used in decision making. For example, ISR researchers explored the possibility of setting a 68% confidence region instead of a 95% region. The results using 3 years of data are shown in the bottom table on the previous page. That approach labels about 1.2% of teachers as ineffective and .3% as highly effective.

The main point of the discussion is this: Using a reasonable set of performance standards, very few teachers in Michigan can be rated with 95% (or 68%) confidence as being ineffective or highly ineffective. Instead, most teachers can only be rated with 95% (or 68%) confidence as “standard” teachers (who are neither ineffective nor highly effective).

\(^{29}\) To be clear, VAM vendors do not recommend using this approach as a standard for consequential personnel decisions. They simply use accurate labels like “above average” and “below average” as diagnostic indicators and they are clear to signal the statistical meaning of their classification system.

\(^{29} \) The assumption that VAMs and observation scores are correlated at \(r = .40 \) comes from data previously analyzed by ISR researchers (see Rowan and Raudenbush, op. cit.). However, the correlation could, in fact, be higher or lower in Michigan.
From this perspective, it also should be obvious that the major emphasis of PA 102 of 2011 cannot be on classifying teachers into a set of fine-grained performance ratings, for the tools used in the pilot simply do not have the needed precision. Instead, as MCEE pointed out in its final report, the main goal of conducting teacher evaluations under PA 102 has to be to produce improved teaching and learning. The main way the law enables such learning is through the provision of feedback to teachers about teaching quality. We have already seen from data presented in Chapter 2, for example, that many teachers and most principals think the observation measures they piloted provided accurate performance information (although both groups were somewhat skeptical about the worth of information provided from standardized...
tests). Moreover, both principals and teachers reported that conferencing gave them an opportunity to come together and discuss performance measures and improvement steps in a satisfying way. Thus, to say that pilot tools cannot make fine-grained distinctions among teachers is not to say they are useless. For the vast majority of employees, the main import of an evaluation system will be to stimulate employee improvement, not to make a consequential personnel decision.

Classification Without Confidence Intervals: Simple Ranking Systems

An approach to personnel classification that relies on confidence intervals is both technically-demanding and, at this point, likely to be beyond the capacity of all but a few local school districts. Nevertheless, PA 102 of 2011 still requires schools to assign performance ratings to teachers and use them to: (a) determine teacher dismissals; and (b) make reductions in force. In light of PA 102’s requirement that annual effectiveness ratings be used in consequential personnel decisions, we now propose a much simpler approach to joint classification for these purposes. The approach we describe is scientifically justified, within the capacity of all public education agencies to implement, and meets the requirements of section 2(e) of PA 102 of 2011.

The approach involves ranking teachers on their combined observation and VAM scores in a very coarse way, where by “coarse,” we mean “made up of large pieces.” To illustrate how this coarse ranking system works, suppose an education authority once again has assembled VAM and observation scores and once again assigned teachers to cells in the 3-by-3 table shown on page 41 using the cut points set earlier. The main difference in the approach to be discussed now and the approach just discussed is that in approach we describe next, measured scores on VAMs and observations are used for decisions, but confidence intervals for scores are not calculated or used. Instead, teachers are simply assigned to ratings categories based on measured scores. The coarse ranking system ISR researchers envision would begin by assigning teachers a score of 1-3 on each performance dimension separately. For example, if a teacher is classified as “ineffective” on the classroom observation metric, that teacher would get a score of one, if the teacher was assigned a rating of “standard” on this dimension, the teacher would get a score of two, and if the teacher was assigned a rating of “highly effective” on the classroom observation component, the teacher would get a score of three on that dimension. The same scores would be assigned on the VAM dimension. That is, teachers would receive a score of one to three on that dimension as well, depending on their rating on the VAM measures. The total points to be awarded to teachers in different cells of the familiar 9-fold table are shown at the top of the next page.

In the system ISR researchers have in mind, annual evaluation ratings would be assigned as in the previous table. That is, three broad classes of teachers would be defined: ineffective teachers (who were rated as ineffective on both performance dimensions), highly effective teachers (who were rated as highly effective on both performance dimensions), and standard teachers (i.e, who were rated neither ineffective nor highly effective on both dimensions). Using three years of accumulated data, but no confidence intervals, our simulation showed that under this approach 92.4% of teachers would be rated as “standard”, 2% of teachers would be classified as ineffective, and 1% as highly effective using three years of data.

In the ISR approach, annual evaluation ratings are assigned using the three ratings categories just discussed. However, decisions about dismissal and reductions in force would use the points system described above. Thus, any teacher whose points total (with three years of data) was 2 would be ineffective and (by law) be dismissed. Reductions in force would occur by ranking teachers (in the pool of affected per

30 It should be noted, however, that the approach is becoming more widely used in school systems around the country, especially in evaluation systems that rely exclusively on VAM scores to make personnel decisions. However, to our knowledge, the decision approach just described has not been applied to classification decisions using teacher observation scores, nor (to our knowledge) has it been used in systems involving joint classification.

31 Again, these percentages can be changed. For example, an education authority could classify any teacher who obtained an “ineffective” VAM rating with three years of data to an overall rating of ineffective (increasing the percentage of teachers with an ineffective rating to 6.7%). Or, an education authority could declare that any teacher with an ineffective rating on the VAM or observation component would be rated ineffective (leading to about 12% of teachers being classified as ineffective). An education authority also could change its standards for classification (e.g., to + or − 1 sd as opposed to the + or − 1.5 sd). That too would alter the percentages in the cells of the table.
sonnel) according to their points totals, with layoffs proceeding from the lowest ranked employee in the pool upward until the required number of layoffs occurred. Because the ranking system is “coarse” (with 78% of teachers having a score of 4), there is always a strong possibility of tied scores among layoff candidates. Should ties occur, ISR researchers would recommend using the other decision criteria permitted by PA 102 of 2011 (for example, professional contributions) to make a final determination of layoffs.

To be sure, this method of coarse ranking (without statistical confidence regions) has the potential to produce errors of decision making about particular teachers. However, averaging scores across multiple years of data will increase precision somewhat. More importantly, it is well known that:

- **Over repeated use, personnel selection decisions made from a simple ranking system will always produce higher average performance in an organization than selection via other (non-ranking) methods, as long as the criterion used in rankings have validity.**

- **Therefore, in the absence of information about measurement precision, ranking is a legally and scientifically defensible approach to making the consequential personnel decisions required by PA 102 of 2011.**

Two final points about the ranking system just described are worth noting. First, the careful reader will note that ISR researchers did not assign differential “weights” to scores on the two performance dimensions used in this coarse ranking system. Obviously, ISR researchers are aware that PA 102 calls for school systems to place greater weight on the “student growth” component of annual teacher evaluations in coming years. However, the problem with assigning proportionally greater weight to evidence of student growth in the immediate future is that there is no credible, scientific evidence of the validity of local measures of this performance dimension (as discussed in Chapter 2). To be sure, locally-developed measures are not entirely lacking in validity, but there is also no a priori reason to assign greater decision weight to these measures versus teacher observation scores. In fact, recent research suggests that the best approach to teacher evaluation in situations of fuzzy measurement is to assign equal weights to scores on the different performance dimensions used to construct a composite performance index.33

Finally, ISR researchers do not believe the points system should be used in annual performance ratings. Instead, ISR researchers think a three category rating system (as shown by red, buff, and green cells of the table) is much more reasonable. The rationale behind having only three ratings is that the thrust of statistical analyses presented in this chapter suggests that teachers in the “buff” colored cells have levels of performance that are, for the most part, statistically indistinguishable. Therefore, a three part classification system for the purposes of annual evaluation, when coupled with consequential standards for tenure and dismissal and a coarse ranking system for reductions in force, would appear (to ISR researchers at least) to be the most warranted approach to making personnel decisions and annual performance ratings in the spirit of section 2(e) of PA 102 of 2011.

Chapter 6: Action Steps To Improve Teacher Evaluations in Michigan

Having reviewed data from the pilot of educator effectiveness tools and having explored approaches to improving the evaluation process, this chapter lists a set of action steps that ISR researchers think are needed to build the State of Michigan’s capacity to conduct high quality teacher evaluations in light of PA 102 of 2011.

Improving District Policy and Procedure Manuals

We begin with a mundane but important action step. In Chapter 2 of this report, we noted that many school districts participating in the MCEE pilot of educator effectiveness tools had not yet developed well-crafted and detailed manuals of policy and procedures in the area of teacher evaluation. Yet well-crafted statements of policy and procedure seem warranted if a new system of teacher evaluation practices is to become regularized across all of the schools in a district and transparent to all constituencies involved. Good examples of such manuals exist, and efforts should be made by MDE and professional associations to disseminate such models in order to inform developments in other local education authorities.

Chapter 2 also found that large percentages of teachers in pilot districts wanted more information about the observation tools used in their annual evaluations and did not clearly understand how indicators of student growth were used in their annual evaluations. Districts need to take steps to include teachers in decisions about annual evaluation procedures and educate teachers about procedures in use, especially in areas (like student growth measures) where teachers and administrators have joint responsibility for execution of the district’s evaluation policy.

Improving Classroom Observation Procedures

The data in Chapter 2 of this report suggested that teacher observation procedures in local schools were uneven. Most principals attended four days of base training, but a majority reported that such training did not prepare them to score observations well using the tools assigned to them. As a result, many principals took additional steps, usually through discussions at meetings in their districts. None of this led to strong implementation of classroom observation regimes in the schools. To be sure, principals tended to spread their observation load across the year, and to spread the observation of any given teacher across time—both good sampling procedures. But principals often did not score items on observation tools in the “manner prescribed” by tool vendors and there were low rates of inter-rater reliability.

Data presented in Chapter 3 of this report suggest that the following are central features of good observation practice:

Training. Training in the use of observation tools should consist not only of the 4 days of introductory training provided by vendors at the outset of the pilot, but also additional calibration training designed to improve observation scoring and reduce rater error. ISR research staff engaged in about 6 additional calibration sessions during the pilot (described in Chapter 3), and this improved rates of inter-rater reliability among ISR observers. Calibration training should become a mandatory component of state-provided training in the use of observation tools as a means of developing more accurate scoring of classroom observation tools.

Fidelity. Individuals conducting classroom observations for teacher evaluations should be instructed to use the classroom observation tools in the “manner prescribed” by tool vendors. It will be especially important for principals to score mandatory items on a protocol, for missing item data can affect observation reliability (and perhaps validity).

Number of observations. Data presented in Chapter 3 of this report showed that the reliability of observation scores improves with the number of observations conducted on a teacher. Those data suggested that 3-4 observations per year should be specified as the minimum number of observations per year when a teacher is in an evaluation cycle. Although more observations than that will further increase observation quality, these data suggest that this minimum be specified.

University of Michigan | Promoting High Quality Teacher Evaluations in Michigan
score reliabilities, teachers and principals expressed concerns about the amount of time they were spending on the evaluation process. For this reason, it seems sensible to keep the number of annual observations between 3-4 for most teachers and to further increase reliability by encouraging districts to calculate running averages using up to three years of observation data in annual evaluations.

Steps to Correct for Rater Error. Chapter 3 of this report showed that rater error is an important feature of observation scores. As a result, tool vendors and districts should be encouraged to develop procedures for correcting observation scores for rater leniency or severity. A very good way for districts to correct for rater error is to “randomly” assign individuals other than the principal to conduct at least some observations alongside the principal over the course of the school year. This practice should be encouraged by the state. Alternative approaches include using the kinds of statistical adjustments discussed in Chapter 3.

Improving Measurement of Student Growth

Chapter 2 of this report suggests that one of the least well-implemented aspects of PA 102 of 2011 was the collection of student growth data for use in annual teacher evaluations. The State of Michigan, that chapter showed, does not have a state testing system that can be used easily in annual teacher evaluations, and as Chapter 5 showed, the current system can only be used in the annual evaluations of around 33% of teachers.

In this light, it is not surprising that educators in schools relied mostly on locally-developed tests to fulfill the student growth requirements of PA 102 of 2011. But Chapter 2 of this report showed that there was very little uniformity of measurement in the area of student growth at schools, and the potential at least, that many uses of local tests were not measuring student growth in ways that are consistent with good psychometric practice.

Improvements to implementation of the student growth component of PA 102 of 2011 will require actions by the State and local education agencies together.

State actions are required. Michigan currently does not have the capacity to use value-added measures of teaching effectiveness in its annual teacher evaluation process. Should the State decide to pursue this option, many steps will need to be taken.

Improved assessment coverage is needed. First, the State needs to expand its assessment system to cover more grades and subjects if VAMs are to be used in the teacher evaluation process. If the state wants to pursue the use of VAMs in teacher evaluations, a student assessment system of the sort described in MCEE’s final report seems essential.

Better TSDL data are needed. Second, even if a testing system with more grade/subject coverage is implemented, efforts will need to be made to improve the collection of data on teacher-student linkages. Evidence presented in Chapter 4 of this report suggested that the current TSDL (teacher-student data linkage) system is not functioning well, connecting up to 25% of teachers to only a small number of students. This limits the precision (and perhaps validity) of VAM scores calculated from MEAP data. Improvements in this area might be difficult because collection of TSDL data is a complex process shared by local education agencies, which use many different data management tools to interface with the State’s SDMS (student data management system) and REP (Registry of Education Personnel). ISR recommends that, first of all, the State undertake a systematic review of the quality of TSDL data and how it is collected and then engage in any required technical upgrades in its own systems or technical assistance to local education agencies that will improve this area of data collection. ISR also recommends that prior to implementing any use of VAM scores in teacher evaluations that the State develop a roster verification process that allows teachers and principals to check the accuracy of data used to estimate VAM scores.

Making “optional” state assessments available to local districts. MCEE’s final report described a set of “optional” assessments being developed for use in Michigan’s public schools. Data from the pilot research discussed in Chapter 2 of this report suggests that even if such assessments become widely administered in schools, there is no guarantee that they will be used in the teacher evaluation process, as evidenced by the low rates of use in teacher evaluations of the assessment tools provided to schools (at no cost) by the pilot project. ISR researchers suspect that the low incidence of use of pilot tools in teacher evaluations was due—not to resistance by local educators—but rather to a lack of technical knowledge and
capacity to use such assessments for teacher evaluation. This suggests that the State of Michigan needs to offer more technical assistance to local schools about the use of well-designed and currently available assessment instruments in teacher evaluation. Many districts, for example, administer standardized achievement tests in grades K-6, but only 20% of teachers reported using data from these tests in their annual evaluations, and many of the assessments used were not good tools for teacher evaluation. In the future, more districts also might begin to use commercially produced “end-of-course” exams (such as those provided by ACT QualityCore). Again, the State needs to offer local districts technical assistance in order for such tests to gain more widespread acceptance and use in annual teacher evaluations.

Developing Better Local Measures of Student Growth. Since responsible implementation of a value-added component of teacher evaluations seems several years away, and since local educators have expressed a strong preference for using locally-developed tests as measures of student growth in teacher evaluations, it seems very likely that in the near future, the student growth component of PA 102 of 2011 will depend crucially on good use of local assessments. Chapter 2 of this report described some potential shortcomings in the use of local assessments in teacher evaluations conducted in pilot schools. One way to improve local practice would be for the state to provide better technical assistance in the use of local assessments in the teacher evaluation process.

Assignment of Effectiveness Ratings to Teachers

Chapter 6 of this report described some of the issues associated with classifying teachers into the effectiveness ratings defined in section 2(e) of PA 102 of 2011. The chapter argued that any personnel evaluation system needs to set standards of performance, measure performance, and understand the degree of statistical (un)certainty of these measures when it makes personnel decisions. Chapter 2 of this report showed that current practices in pilot districts departed from this process to some extent. Districts did have standards (although they were apparently not uniform across districts). Districts also had measures, but apart from implementation of 4 observation protocols, measures of student growth and professional growth varied widely from district-to-district, and no districts attempted to assess the degree of statistical uncertain-

Setting Performance Standards. The state should convene a panel of educators and researchers and engage in a standards-setting exercise that sets recommended levels of performance for a teacher to be rated above “ineffective” in an annual evaluation. This involves determining what scores are to be obtained on the state-recommended observation protocols, what scores could be used from value-added modeling, and what processes could be used to set uniform performance standards on commercially-developed and locally-developed assessments commonly used in schools.

Vendor Assessment of Measurement Precision. ISR recommends that any observation vendor or VAM vendor having a contract with the state provide the state and local education agencies with standard errors of measurement for use in setting confidence intervals around observation and VAM scores. This is common practice in educational measurement and is already a piece of information provided by the pilot’s VAM vendors. It is not, however, something that is routinely provided by observation vendors—despite it being a common practice in the education measurement community among both test makers and researchers. Observation vendors have the technical capacity to develop psychometrically sound measures and provide SEMs to clients. State contracts should insist on the provision of this information.

Local Assessment of Measurement Precision. It will be more difficult for local education authorities to quantify measurement precision of their locally-developed measures—especially locally-developed measures of student growth. It also seems unwise to demand that local entities develop procedures to calculate precision. In most cases, local districts will lack both the technical expertise and the capacity to develop highly sophisticated measures of precision.

Even in the absence of information about measurement precision, PA 102 of 2011 will continue to be in force, and districts must continue not only to assign
teachers to effectiveness ratings annually, but also use evaluation information for consequential personnel decisions. ISR researchers recommend that, until a more rigorous system of measurement is put into place by the State, districts use a three-category classification system in annual evaluations and a simple ranking approach when making dismissal and layoff decisions. In this process: (a) the state will work to promote consensus and provide guidelines about standards for placing teachers into three effectiveness ratings (ineffective, standard, and highly effective); (b) an initial rating of teachers will be developed from two rating criteria—student growth and classroom observations; (c) any teachers who is rated as ineffective on both criteria three years in a row can be dismissed under the requirements of PA 102 of 2011; (d) reductions in force can be handled through a simple ranking procedure in which a teacher’s overall score is a simple sum of his or her ratings (on a scale of 1-3) on classroom observations and student growth, and reductions in force will be enforced simply by always choosing the teacher among the list of potential teachers subject to reduction in force that has the lowest ranking according to this formula. Ties can be handled by including additional data—including data on professional responsibilities and professional growth. Importantly, while a simple ranking system of this sort will produce some errors in decision making, it is well known that over the long run, it works to increase the mean performance level in organizations. In the absence of information about precision of measurement, it is therefore a rational procedure that is widely used by organizations and recommended by experts in the field of personnel psychology.

Timing of Improvement Steps

The list of action steps just presented represents an enormous effort. As a result, ISR recommends that a new teacher evaluation system be rolled out over a period of at least three years.

Observation Tool Rollout

Begin Rolling out Observation Tools. The rollout of the teacher observation component of Michigan’s new teacher evaluation system seems like an immediate target of action. Chapter 2 showed that most principals thought the observation tools they piloted were better than what they had used in the past, and both teachers and principals found them to provide reasonably accurate depictions of classroom practice. Moreover, the vendors that ISR worked with had well-developed training procedures and technical infrastructure that could be implemented at scale.

Recommended Tools. On the basis of pilot data, ISR is prepared to strongly recommend the use of the Danielson FFT observation protocol as a state-approved tool. FFT has good measurement properties, a well-functioning technical system for capturing and reporting observation data to schools, and is well-positioned to provide calibration training. ISR also recommends 5D and the Thoughtful Classroom (TC) tools for state adoption, although with slightly less enthusiasm than FFT. The TC tool had the highest rated technical platform and, for the most part, ISR researchers found it to be a well-functioning instrument from a psychometric standpoint. The main problem with TC from ISR’s perspective was the high percentage of items (other than the “four corners”) that were rated with low frequency by principals. If this instrument is to be used in schools, ISR recommends that the “four corners” items be rated on all observation occasions and that scores used in final teacher evaluations be based on teacher scores on these items. The 5D instrument has many positive features—including a focus on intellectually demanding work in classrooms—but it is a long instrument and during the pilot, its technical systems were not rated as highly by principals or used as much by them as were the other vendors’ technical systems. If the state uses 5D as a vendor, it should explore development of a “short form” of the instrument and investigate the status of its technical systems. Finally, ISR researchers want to express important reservations about the Marzano instrument. To begin, this is an extremely complex instrument, and in the pilot project, the instrument was filled out with very low rates of agreement about: (a) when to score items; and (b) the scores to be assigned on items that were scored. Of the four instruments piloted, this instrument was the hardest to work with from a psychometric standpoint, and as a result, ISR researchers were unwilling to develop well-established IRT models using data from the instrument.

Training by Observation Tool Vendors. Once the state decides which vendors it wants to work with it will need to release requests for cost proposals. However, prior to taking this step, ISR recommends convening observation vendors and cognizant state officials to discuss the array of services the state wants to purchase and the timing of any rollout of training. Interviews with observation tool vendors conducted by ISR researchers suggest that it might be difficult
for any vendor to complete statewide training of all clients in a one-year period, and that both initial and validation training might be pursued in partnership with local organizations.

VAM Rollout

The rollout of any system of value-added measurement of teaching effectiveness will require numerous steps.

Assessment Development. Obviously, use of VAM scores in teacher evaluations requires an expanded state testing system. The rollout of this system will take time, probably proceeding along the timeline discussed in MCEE’s Final Recommendations document.

TSDL Development. During the time period that these new state assessments are under development, the State would be wise to take immediate action to better structure its data systems for value-added modeling. An immediate first step would be to improve the socio-technical systems involved in capturing and verifying TSDL data. As discussed in Chapter 4 of this report, up to 25% of teachers in the VAM pilot were associated with as few as 7 students using the current data system, and this compromised the technical quality of VAM estimates. As a result, there is a need to investigate the current data collection system thoroughly, find gaps in data processing, and correct any shortcomings through technical assistance to local districts.

Verification System. Even if a well-functioning TSDL data system is developed, ISR recommends implementation of a roster verification system in Michigan. This will provide an important chance for those affected by the data system to verify that data used in potentially “high stakes” decisions are accurate from their point of view and can be another step where errors are corrected and important data are added to the TSDL data.

Learning about VAMs. Value-added modeling is a complex endeavor, and VAM vendors use many different approaches to estimate teaching effectiveness. During the course of the pilot, ISR researchers became concerned that many key education constituencies might not fully understand the technical details of value-added modeling and the required policy choices that need to be made by key decision makers. ISR researchers therefore recommend that cognizant state officials convene meetings with the VAM vendors to learn more about approaches to value added measurement, to gain advice about how to proceed, and to begin to put in place any contractual specifications the state will require. Such convenings also should include technical experts and state educators, whose views on the issues should be taken into account.

ISR researchers have no strong preferences about choice of a VAM vendor. Each vendor is technically competent and can provide strong services to Michigan. Choice of a vendor, ISR assumes, will come down to a competitive bidding process that selects the one vendor who can provide services the State lists in its request for proposals at a competitive price.

Standards Setting and Classification

The education community in Michigan needs to develop a more uniform understanding about standards of teaching effectiveness to be used in teacher evaluations. In addition to implementing the standards setting process described earlier in this chapter, ISR recommends two additional steps.

CEPI should receive all teacher observation data arising from the use of state-approved teacher observation tools (for research purposes only). Such data can be obtained from vendor databases, and transmission of data to the state should be a part of any contract with observation tool vendors. Using such data the state (or a qualified contractor) can explore appropriate psychometric models to apply to these data and how to quantify the precision of estimates of teaching practice derived from such models. This work should be undertaken in conjunction with (and inform) the statewide standards setting process discussed above. At issue in this research are: (a) the score values that will be considered as cutoffs for classifying teachers into the different effectiveness ratings mandated by section 2(e) of PA 102 of 2011; and (b) the relative precision of decision making that is advisable (i.e., the confidence intervals desired by decision makers in the classification process).

The State of Michigan also should contract with a vendor to estimate VAM scores on a test basis using existing state assessment (and perhaps other) data. At a minimum, research with state assessment data can evaluate the effectiveness of efforts to improve state TSDL data by examining the number of student-teacher linkages available in existing state data before and after any TSDL improvement projects. Such re-
search also could examine whether and how any such improvements affect the technical quality of VAM score estimates.

Costs

In a separate report, ISR is providing cost estimates for implementing different configurations of a statewide system to support high quality teacher evaluation. That report will be disseminated to the public shortly after release of the present report.
To Contact the First Author:

Brian Rowan
Burke A. Hinsdale Collegiate Professor in Education Research Professor, Institute for Social Research Professor of Sociology

Email: browan@umich.edu
Phone: 734/647-3648
Mail: Education and Well Being Program ISR Survey Research Center The University of Michigan 2354 Perry Building 330 Packard Street Ann Arbor, MI 48104-1248